

Module Handbook

Programme Engineering Physics (Bachelor)

Faculty Faculty of Applied Natural Sciences and Industrial Engineering

Contents

Module N-01 Foundations of Mathematics	4
Module N-02 Foundations of Physics	6
Module N-03 Applied Physics	9
Module N-04 Foundations of Electrical Engineering	11
Module N-05 Chemistry and Materials	14
Module N-06 Informatics	17
Module N-07 English	20
Module N-08 Presentation Techniques	21
Module N-09 Advanced Mathematics	23
Module N-10 Advanced Physics	26
Module N-11 Measurement Engineering	
Module N-12 Microcomputer Technology	
Module N-13 Digital Technology	
Module N-14 Control Engineering	34
Module N-15 Microsystems Technology	
Module N-16 Foundations of Optoelectronics	
Module N-17 Statistics	
Module N-18 Optical Materials	43
Module N-19 Advanced Optoelectronics	
Module N-20 Production Engineering Optics	
Module N-21 Project Work	
Module N-22 Innovation	51
Module N-23 Optical Technologies	52
Module N-24 Continuative Procedures	54
Module N-25 Industrial Sensor Systems	57
Module N-26 Advanced Sensor Systems	59
Module N-27 Project Work	62
Module N-28 Innovation	63
Module N-29 Optical Analytical Procedures	65
Module N-30 Bionics	68
Module N-31 Remote Sensing	70

Module N-32 Business Practice	71
Module N-33 Bachelor	74

Module N-01 Foundations of Mathematics

Module	N-01
Module Name	Foundations of Mathematics
Module Components	N1101 Analytical Foundations of Engineering Studies
(courses)	N2101 Mathematics I
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	10
Valuation Mode	Total Module Examination (Grade of the module is weighted according to the ECTS credits of the module components): Written exam 90 min
Module Head	Prof. Dr. Michael Moritz
Admission and Recommended Prerequisites	
Aims of the Module	 Primary learning objective: Students learn the foundations of mathematics. Furthermore, students gain the following competencies: Learning mathematical basics (i.e. terms and solution methods) as far as they are necessary for the course of studies of the first semesters Introduction into the independent acquirement of mathematical methods for engineering applications (esp. from the literature)

Course	N1101
Name	Analytical Foundations of Engineering Studies
Instructors	Prof. Dr. Michael Moritz
Assignment to the Module	N-01 Foundations of Mathematics
Semester	1
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: attendance 60h, homework 60h, exam
	preparation 30h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures with integrated example exercises,
	homework
Media Forms	Writing on the board in combination with script
Literature	Papula, L., Mathematik für Ingenieure und

	Naturwissenschaftler, Vieweg Verlag, Wiesbaden, 2012 Papula, L., Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag,
Module Head	Wiesbaden, 2013 Prof. Dr. Michael Moritz
Content	Students gain formal and mathematical competencies so that they can formally describe problems from linear algebra.
	 Content: Basics (e.g. set of real and complex numbers, term of mapping,) Linear systems of equations, matrices, determinants Sequences and series (real numbers) Functions of a real variable (plane) Curves and their mathematical description Functions of several variables Remarks to the functions in the n-dim. space

Course	N2101
Name	Mathematics I
Instructors	Prof. Dr. Michael Moritz
Assignment to the Module	N-01 Foundations of Mathematics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	2
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: attendance 60h, homework 60h, exam
	preparation 30h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures with integrated example exercises,
	homework
Media Forms	Writing on the board in combination with script
Literature	Papula, L., Mathematik für Ingenieure und
	Naturwissenschaftler, Vieweg Verlag, Wiesbaden,
	2012
	Papula, L., Mathematische Formelsammlung für
	Ingenieure und Naturwissenschaftler, Vieweg Verlag,
	Wiesbaden, 2013
Module Head	Prof. Dr. Michael Moritz
Content	Students gain formal and mathematical competencies so that they can formally describe problems from

analysis. Students apply their mathematical knowledge for solving formal tasks.
 Content: Differential calculus (for functions of a variable) Integral calculus Power series Basic terms of differential geometry of plane curves Area computation of plane areas delimited by (random) curves Differential calculus for functions of several variables Optimization, least squares method Multiple integrals
o Fourier series

Module N-02 Foundations of Physics

Module	N-02
Module Name	Foundations of Physics
Module Components	N1102 Physics I
(courses)	N2102 Physics II
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	12
Valuation Mode	Total Module Examination (Grade of the module is
	weighted according to the ECTS credits of the module
	components):
	Written exam 90 min
Module Head	Prof. Dr. Florian Flossmann
Admission resp.	
Recommended	
Prerequisites	
Learning Objectives	Understanding physical basics of mechanics, vibrations,
	waves and thermodynamics.
	In particular, comprehension of linear movement and
	rotational motion. Application of conservation laws of
	energy, linear impulse and angular momentum.
	Comprehension of physical properties of fluids at rest
	as well as in motion. Understanding harmonic
	vibrations and propagation of waves. Application of the
	wave equation. Understanding the terms temperature,
	thermal energy and the laws of thermodynamics. The
	student should be able to analyse natural systems and
	processes on the base of physical basic ideas, to

describe them with the respective physical laws and to conduct computations for given system parameters.

Course	N1102
Name	Physics I
Instructors	Prof. Dr. Florian Flossmann
Assignment to the Module	N-02 Foundations of Physics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	1
Credit Hours	6
Credit Points (ECTS)	8
Workload	240h: lectures 90h, exercises 45h, homework 45h,
	exam preparation 60h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, projector, overhead projector
Literature	Tipler P.A., Mosca G., Physik für
	Wissenschaftler und Ingenieure, 6. Auflage, Spektrum Akademischer Verlag, München, 2009 Mills D. et al., <i>Arbeitsbuch zu Tipler/Mosca</i> , 2. Auflage, Spektrum Akademischer Verlag, München, 2009
Module Head	Prof. Dr. Florian Flossmann
Content	Students gain an understanding for physical connections and the ability to mathematically model physical phenomena of mechanics. Students apply their physical knowledge for solving formal tasks.
	 Content: Systems of units Mechanics one-dimensional movement, movement in two or three dimensions Newton's axioms, application of Newton's axioms, work and energy, conservation of energy, Particle systems and the conservation of the linear impulse, rotational motions, The conservation of the rotational momentum, gravity, fluids

Name	Physics II
Instructors	Prof. Dr. Florian Flossmann
Assignment to the Module	N-02 Foundations of Physics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	2
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures 60h, exercises 20h, homework 20h,
	exam preparation 20h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, projector, overhead projector
Literature	Tipler P.A., Mosca G., Physik für Wissenschaftler und
	Ingenieure, 6. Auflage, Spektrum Akademischer
	Verlag, München, 2009
	Mills D. et al., Arbeitsbuch zu Tipler/Mosca, 2.
	Auflage, Spektrum Akademischer Verlag, München,
	2009
Module Head	Prof. Dr. Florian Flossmann
Content	Students gain an understanding for physical connections and the ability to mathematically model physical phenomena of vibrations, waves and thermodynamics. Students apply their physical knowledge for solving formal tasks.
	Content:
	 Vibrations and waves: vibrations, harmonic oscillator, damped oscillation, forced oscillation and resonance, propagation of waves, Doppler effect, superposition of standing waves, dispersion Thermodynamics: temperature and kinetic theory of gases, absolute temperature, state equations for gases, thermal energy, phase transitions and latent heat, first and second law of thermodynamics, volume work, thermal capacity of gases and solids, thermal engines, Carnot cycle, entropy, third law of thermodynamics, thermal expansion, heat transmission

Module N-03 Applied Physics

Module	N-03
Module Name	Applied Physics
Module Components	N1103 Technical Optics
(courses)	N2103 Physics Technical Training
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	8
Valuation Mode	The final grade of the module is formed by the partial grades of the module components weighted by ECTS credits
Module Head	Prof. Dr. Florian Flossmann
Admission resp.	
Recommended	
Prerequisites	
Learning Objectives	 Students are supposed to understand and be able to apply the theoretical basics of optics. They are supposed to gain knowledge about the most important optical procedures and devices. They know the limits of real optical set-ups and know how to assess them. Students understand the basic functional groups in optical devices. They are able to compute simple optical systems in ray tracing programs and to interpret the various presentations of the results Deepening the understanding through a physical practical training, i.e. by own experiments, the theoretically provided knowledge from the lectures are to be deepened.

Course	N1103
Name	Technical Optics
Instructors	Prof. Dr. Florian Flossmann
Assignment to the Module	N-03 Applied Physics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	1
Credit Hours	4
Credit Points (ECTS)	4

Workload	120h: lectures 60h, exercises 15h, homework 15h,
	exam preparation 30h
Examination Performance	Written exam 90 min.
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, projector, overhead projector
Literature	Schröder G., Treiber H., <i>Technische Optik</i> , 10.
	Auflage, Vogel, Würzburg, 2007
	Litfin G., <i>Technische Optik in der Praxis</i> , 3. Auflage, Springer, Berlin, 2005
	Kühlke D., Optik: Grundlagen u. Anwendungen, 3.
	Auflage, Harri Deutsch, Frankfurt am Main, 2011
	Hecht E., Optik, 4. Auflage, Oldenbourg, München,
	2005
Module Head	Prof. Dr. Florian Flossmann
Content	Students gain compentencies in the areas of ray
	optics and optical components. Students apply these competencies when solving tasks from optics.
	Content:
	 Light propagation and optical imaging (light, wave optics, ray optics, optical imaging, image equations)
	 Imaging components (materials, lenses, optical flats, prisms, image defects)
	 Bundle limitations (field diaphragms, aperture diaphramgs, pupils, hatches)
	 Fibre optics
	 Optical instruments (telescope, microscope, magnifier, projectors, camera lenses, magnification)
	 Determining data of optical systems
	Exercises on PC with Raytracing program

Course	N2103
Name	Physics Practical Training
Instructors	Prof. Dr. Florian Flossmann und
	Prof. Dr. Josef Kölbl
Assignment to the Module	N-03 Applied Physics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	2

Credit Hours	2
Credit Points (ECTS)	4
Workload	120h: attendance 30h, homework 30h, reports 30h,
	seminar paper 30h
Examination Performance	Seminar paper
Final Grade Formation	See module
Language	German
Teaching Methods	Practical Training
Media Forms	Own experiments
Literature	Tipler P.A., Mosca G., Physik für Wissenschaftler und
	Ingenieure, 6. Auflage, Spektrum Akademischer
	Verlag, München, 2009
	Mills D. et al., Arbeitsbuch zu Tipler/Mosca, 2.
	Auflage, Spektrum Akademischer Verlag, München,
	2009
Module Head	Prof. Dr. Florian Flossmann
Content	Students gain practical competencies in the
	implementation and evaluation of experiments.
	Content:
	 Experiments in the area of mechanics (ballistic
	pendulum, mass moment of inertia)
	 Experiments in the area of optics (optical
	devices, deflection, polarization)
	 Experiments in the area of thermodynamics
	(gas laws, thermal conduction, heat transfer)
	 Experiments in the area of electrical
	engineering

Module N-04 Foundations of Electrical Engineering

Module	N-04
Module Name	Foundations of Electrical Engineering
Module Components	N1104 Foundations of Electrical Engineering I
(courses)	M2104 Foundations of Electrical Engineering II
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	8
Valuation Mode	Total Module Examination (Grade of the module is
	weighted according to the ECTS credits of the module
	components):
	Written exam 90 min
Module Head	Prof. Dr. Josef Kölbl

	1
Admission resp.	
Recommended	
Prerequisites	
Learning Objectives	Prime learning objective: Students gain knowledge about
	the foundations of electrical engineering.
	Therefore, students gain the following competencies:
	 Understanding the physical foundations of
	electrical engineering
	 Ability to apply general procedures for the analysis
	of networks
	 Ability to determine parameters of periodic signals
	• The student is able to calculate networks with
	sinusoidal excitations while applying the complex
	alternating current calculation and vector
	diagrams
	 Ability to assess systems with transfer functions
	• The student is able to dimension simple electrical
	filters
	 Students have gained the ability to calculate
	transient phenomena with boundary conditions
	with the aid of the Laplace transformation
	• Students are able to determine the spectrum of
	non-sinusoidal periodic signals
	 Students possess knowledge in the application of
	the simulation tool SPICE for the simulation of
	simple steady and unsteady problems
	 Practical understanding of the most important
	electric components like resistance, capacity and
	inductivity
	 Creation of simple circuits in the laboratory on the
	plug board and printed circuit board,
	implementation of elementary measurements
	 Working with multimeters, signal generators and
	oscilloscope.

Course	N1104
Name	Foundations of Electrical Engineering I
Instructors	Prof. Dr. Josef Kölbl
Assignment to the Module	N-04 Foundations of Electrical Engineering
Assignment to the Curriculum	Applied Physics (Bachelor)
Study Focus	General
Semester	1
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures 60h, exercises 20h, homework, 20h,

	exam preparation 20h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, projector, overhead projector
Literature	 Führer A., Heidemann K., Nerreter W., Grundgebiete der Elektrotechnik, Band 1, 8. Auflage (auch Aufgabenbuch), Hanser, München, 2006 Hagmann G., Grundlagen der Elektrotechnik, 15. Auflage, Aula-Verlag (auch Aufgabenbuch), Wiebelsheim, 2011 Moeller F. et al., Grundlagen der Elektrotechnik, 23. Auflage, Vieweg, Wiesbaden, 2013
Module Head	Prof. Dr. Josef Kölbl
Content	 Students gain the ability to analyse networks with general procedures and to determine parameters of periodic signals. Content: Physical foundations: physical parameters, Ohm's law, work, power, sources Network Theory: Kirchhoff's laws, general network analysis, network theorems Non-linear elements Periodic signals: parameters, power, Fourier series expansion AC circuits: AC components, parameters, complex AC calculation Frequency responses, normalization, Decibel-values Practical training: Introduction into Spice,

Course	N2104
Name	Foundations of Electrical Engineering II
Instructors	Prof. Dr. Josef Kölbl
Assignment to the Module	N-04 Foundations of Electrical Engineering
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	2
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures 60h, exercises 20h, homework, 20h,
	exam preparation 20h
Examination Performance	See module
Final Grade Formation	See module
Language	German

Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, projector, overhead slides
Literature	 Führer A., Heidemann K., Nerreter W., Grundgebiete der Elektrotechnik, Band 1 und 2, 8. Auflage (auch Aufgabenbuch), Hanser, München, 2006 Hagmann G., Grundlagen der Elektrotechnik, 15. Auflage, Aula-Verlag (auch Aufgabenbuch), Wiebelsheim, 2011 Moeller F. et al., Grundlagen der Elektrotechnik, 23. Auflage, Vieweg, Wiesbaden, 2013
Module Head	Prof. Dr. Josef Kölbl
Content	 Students gain the ability to calculate and dimension electric filters and to analyse transient phenomena with boundary conditions with the aid of the Laplace transformation. Students gain competencies when describing systems in the state space (setting up equations, solving equations) Content: Frequency response functions, Bode diagrams, locus Electric filters: curves, filter types, realizations, passive filters, active filter circuits with operational amplifiers Periodic non-sinusoidal and non-periodic non-sinusoidal signals: Fourier series, Fourier spectrum, Fourier transformation Transient phenomena: Laplace transformation, calculation of transient phenomena with boundary conditions with the aid of the Laplace transformation

Module N-05 Chemistry and Materials

Module	N-05
Module Name	Chemistry and Materials
Module Components	N1105 Chemistry
(courses)	N2105 Materials
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	8
Valuation Mode	Total Module Examination (Grade of the module is
	weighted according to the ECTS credits of the module
	components):
	Written exam 90 min
Module Head	Prof. DrIng. Christine Wünsche

Course	N1105
Name	Chemistry
Instructors	Dr. Roland Krieglstein
Assignment to the Module	N-05 Chemistry and Materials
Assignment to the Curriculum	Applied Physics (Bachelor)
Study Focus	General
Semester	1
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures 60h, exercises 20h, homework 20h,
	exam preparation 20h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, projector, molecular models

Literature	Riedel E., Janiak Ch., Anorganische Chemie, 6. Aufl., de
	Gruyter, Berlin, 2007
	Mortimer C.E., Müller U., Beck J., Chemie, 11. Auflage,
	Thieme, Stuttgart, 2014
	Hoinkis J., Lindner E., Chemie für Ingenieure, 13.
	Auflage, Wiley-VCH, Weinheim, 2007
Module Head	Prof. DrIng. Christine Wünsche
Content	Students gain competencies when analyzing and solving
	tasks in the areas of organic, inorganic and physical
	chemistry.
	Content:
	 Composition of matter: elementary particles,
	radioactivity, atomic structure (shell model,
	orbitals), derivation of the period system of
	elements
	 Chemical bonding: covalent, ionic and metal
	bonding, semiconductors, semi-valences (van der
	Waals interactions, hydrogen bonds)
	 Chemical equations: acid/base reactions, redox reactions
	 Chemical equilibria: law of mass action, pH-value and acid/base starch, solubility product, general gas
	equation
	 Properties of catalysts
	 Foundations of electrochemistry: series, Danielle
	element, lead-acid battery, corrosion, corrosion control
	 Foundations of organic chemistry: alkanes, alkenes,
	alkynes, rules of nomenclature with simple
	substituents, cis-trans isomerism, radical
	polymerization, thermoplastics – duroplasts - elastomers

Course	N2105
Name	Materials
Instructors	Prof. DrIng. Christine Wünsche
Assignment to the Module	N-05 Chemistry and Materials
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	2
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures 60h, exercises 20h, homework 20h,
	exam preparation 20h
Examination Performance	See module

Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, projector, overhead projector
Literature	Bergmann W., Werkstofftechnik, Teil 1 und 2,
	6. Auflage, Hanser, München, 2008
	Bargel H. J., Schulze G., Werkstoffkunde, 11. Auflage,
	Springer, Berlin, 2012
	Ilschner B., Singer R. F., Werkstoffwissenschaften
	und Fertigungstechnik, 5. Auflage, Springer,
	Heidelberg, 2010
Module Head	Prof. DrIng. Christine Wünsche
Content	Students gain knowledge about the basics, production
	and application of materials. Students gain the ability
	to select materials according to predetermined
	specifications as well as to judge their operational
	behavior.
	Content:
	 Classification of materials,
	 o Crystalline condition,
	 o Elastic and plastic behavior,
	 Thermally-activated processes,
	 Phase transitions, formation of alloys,
	 Equilibrium diagrams, the system iron-carbon
	 Mechanically destructive test procedures
	 Electric, magnetic properties in relation to the
	composition of matter
	 Optical properties
	 Introduction into fracture mechanics
	 Foundations of production procedures of
	selected materials

Module N-06 Informatics

Module	N-06
Module Name	Informatics
Module Components	N1106 Informatics I
(courses)	N2106 InformaticsII
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	10

Valuation Mode	Total Module Examination (Crade of the module is
	Total Module Examination (Grade of the module is
	weighted according to the ECTS credits of the module
	components):
	Written exam 90 min
Module Head	Prof. Dr. Thomas Stirner
Admission resp.	
Recommended Prerequisites	
Learning Objectives	Prime learning objective: Students learn the foundations of informatics and the working with a programming language. Thereto, students gain the following competencies:
	 Basic understanding of computer hardware and peripheral devices Skills in calculating with Boolean algebra,
	elementary calculation operations with binary numbers, conversion from and to the hexadecimal number system
	 Working with an operating system (windows and command lines-oriented)
	 Understanding the tools Editor, Assembler, Compiler, Linkers.
	 Knowledge of elementary software engineering methods, ability to apply programming guidelines
	 Mastering the handling of a C development environment, understanding the tasks of a precompiler
	 Students are to be enabled to algorithmize problems of simple to medium complexity and to code them successfully with the aid of the language C.

Course	N1106
Name	Informatics I
Instructors	DiplIng. (FH) Peter Eimerich
Assignment to the Module	N-06 Informatics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	1
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: attendance 60h, homework 60h, exam
	preparation 30h
Examination Performance	See module
Final Grade Formation	See module
Language	German

Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, script, projector, exercises
Literature	Rechenberg P., Was ist Informatik?, 3. Auflage, Hanser, München, 2000
	Skript
Module Head	Prof. Dr. Thomas Stirner
Content	Students gain a basic understanding of digital computers and their functionality.
	 Content: Computer architecture and perpherical devices Number systems, coding, Boolean algebra Operating systems, working with operating systems and file systems Software engineering tools: Editor, Complier, Linker

Course	N2106
Name	Informatics II
Instructors	Prof. Dr. Thomas Stirner
Assignment to the Module	N-06 Informatics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	2
Credit Hours	4 (2 V + 2 P)
Credit Points (ECTS)	5
Workload	150h: attendance lectures 30h, practical training 30h,
	preparation and follow-up lectures and computer
	practical training (partly as homework) 60h, exam
	preparation 30h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Seminar-like lessons, exercises, practical training
Media Forms	Board, exercises
	Script, slides
	PC/Laptop, projector
	Computer practical training
Literature	Klima R., Selberherr S., Programmieren in C, 3.
	Auflage, Springer, Berlin, 2010
	Erlenkötter H., C Programmieren von Anfang an, 13.
	Auflage, Rowohlt, Hamburg, 2007
Module Head	Prof. Dr. Thomas Stirner
Content	Students gain knowledge of and the ability to apply a higher programming language, in particular the
	programming language C.

C	 Content: Software Engineering; process models, organization of software projects, programming guidelines Theoretical informatics: minimal computer models, computability Development environment for C programming: gcc, Dev-Cpp Precompiler: include, define macros Data types, data structures: integral numbers, numbers of points, characters/character strings, abstract data types Arithmetic operators, comparisons, logical operators Control structures: branches, loops, functions,
	 Control structures: branches, loops, functions, recursions
	 Pointers: character strings, vectors, fields, linked lists
	linked lists Dynamic memory management
	o bynamic memory management

Module N-07 English

Module	N-07
Module Name	English
Module Components	N2107 English for Engineers
-	N2107 English for Englineers
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	4
Valuation Mode	Total module examination:
	Written exam 60 min or oral exam 30 min
Module Head	Tanja Mertadana M.A.
Recommended	B1: O-level; B2: A-level
Prerequisites	
Learning Objectives	 Analyze listening texts from engineering or
	business contexts for global and detailed
	information
	 Summarize orally reading and listening texts
	 Fluently comment in discussions
	 Create short presentations
	 Quickly read technical texts and distinguish
	between global and detailed knowledge
	 Be able to expand and apply vocabulary to
	general technical and business areas
	 Improvement of the written expression

Course	N2107
Name	English for Engineers
Instructors	Deborah Lehman-Irl M.A.
Assignment to the Module	N-07 English
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	2
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures with exercises 60h, homework 30h,
	exam preparation 30h
Examination Performance	Proof of academic achievement + written exam 60min
	or oral exam 30min
Final Grade Formation	Written exam 100% or oral exam 100%
Language	English
Teaching Methods	Language course with group and partner work
Media Forms	OHP, CD, board
Literature	"Englisch für technische Berufe"
Module Head	Tanja Mertadana M.A.
Content	Students gain foreign-language competencies, in
	particular through reading texts, listening texts and
	conversations in the area of technical English.
	Content:
	e.g. materials and their properties, energy, job
	applications, alternators, bridges, HDTV; Grammar:
	Passive, if needed additional topics; the material is
	partly taken from textbooks, partly current texts from
	magazines, Internet
	5

Module N-08 Presentation Techniques

Module	N-08
Module Name	Presentation Techniques
Module Components	N3101 Presentation Techniques
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	2
Valuation Mode	Total module examination

	Oral exam 30 min
Module Head	Prof. Peter Schmieder
Recommended	
Prerequisites	
Learning Objectives	The ability to prepare specialized and general
	educational topics for a presentation and to give a
	competent talk in front of audience.

Course	N3101	
Name	Presentation Techniques	
Instructors	Thomas Weiß M.A.	
Assignment to the Module	N-08 Presentation Techniques	
Assignment to the	Applied Physics (Bachelor)	
Curriculum		
Study Focus	General	
Semester	3	
Credit Hours	2	
Credit Points (ECTS)	2	
Workload	60h: lectures with exercises 30h, homework 15h,	
	presentation preparation 15h	
Examination Performance	See module	
Final Grade Formation	See module	
Language	German	
Teaching Methods	Lectures, seminar-like lessons, exercises	
Media Forms	Board, projector, overhead projector	
Literature	Bernstein, D., <i>Die Kunst der Präsentation</i> , Campus Verlag, Frankfurt a. M., 1992 Hierhold, E., <i>Sicher präsentieren – wirksamer</i> <i>vortragen</i> , 7. Auflage, Redline, Wien, 2005 Kratz, HJ., <i>Rhetorik, Schlüssel zum Erfolg</i> , Modul Verlag, Wiesbaden, 1989 Scheler, U., <i>Informationen präsentieren</i> , Gabal Verlag, Offenbach, 1997	
Module Head	Prof. Peter Schmieder	
Content	 Students gain the ability to present and defend scientific information in front of professional audience. Content: Preparation of a presentation (addressee analysis, aim of the presentation, available time, available media, etc.) Structure of a presentation (introduction, main part, conclusion) Presentation and way of speaking Gestures and facial expression Visualization 	

٠	Design of slides
•	Reaction to questions

Module N-09 Advanced Mathematics

Module	N-09
Module Name	Advanced Mathematics
Module Components	N3102 Mathematics II
(courses)	N4101 Mathematics III
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	9
Valuation Mode	Total Module Examination (Grade of the module is
	weighted according to the ECTS credits of the module
	components):
	Written exam 90 min
Module Head	Prof. DrIng. Christine Wünsche
Admission resp.	N1101 Analytical Foundations of Engineering Studies
Recommended	N2101 Mathematics I
Prerequisites	
Learning Objectives	Prime learning objective: Students gain knowledge of higher mathematics.
	 Thereto, students gain the following competencies. Understanding the mathematical approach for engineer problem solving of technical problems that are solved and described applying the methods of higher mathematics. In particular, students look closely at the mathematical handling of vector analysis and differential equations in the technical application context, i.e. starting from modelling to (analytical) solving to the interpretation of results. Ability to work in a team from a professional perspective (i.e. creating the preconditions to a professional discussion with colleagues from related scientific fields like for example engineers, economists, etc.) The student gets familiar with the essence and the meaning of mathematical models as a major component of the increasingly important simulation programs, whereat in particular the topics from the application areas measurement and control engineering, heat transmission and fluid mechanics are in the foreground.

Course	N3102

Name	Mathematics II	
Instructors	Prof. DrIng. Christine Wünsche	
Assignment to the Module	N-09 Advanced Mathematics	
Semester	3	
Credit Hours	4	
Credit Points (ECTS)	4	
Workload	120h: attendance 60h, homework 30h, exam	
WOIKIDad	preparation 30h	
Examination Performance	See module	
Final Grade Formation	See module	
	German	
Teaching Mehtods	Lectures with integrated example exercises, homework	
Media Forms	Writing on the board in combination with a script	
Literature	Papula, L., Mathematik für Ingenieure und	
	Naturwissenschaftler, Vieweg Verlag, Wiesbaden, 2009	
	Papula, L., Mathematische Formelsammlung für	
	Ingenieure und Naturwissenschaftler, Vieweg Verlag,	
	Wiesbaden, 2009	
	Rießinger T., Mathematik für Ingenieure, 5. Auflage,	
	Springer, Berlin, 2005	
	Stroud, K.A., Dexter J. Booth: Engineering	
	Mathematics, 7. Auflage, Industrial Press, New York,	
	2013	
	Stroud K.A., Dexter J. Booth: Advanced Engineering	
	Mathematics, 5. Auflage, Palgrave Macmillan, New	
	York, 2011	
Module Head	Prof. DrIng. Christine Wünsche	
Content	Students gain formal and mathematical competencies so that they can formally describe problems from the areas of differential equations, Fourier and Laplace transformation. Students apply their mathematical knowledge when solving formal tasks.	
	 Content: (Ordinary) differential equations of the first, second and higher order Examples of numerical methods for solving ordinary differential equations Fourier series Fourier transformation Laplace transformation Application examples from science and technology 	

Course	N4101

Name	Mathematics III	
Instructors		
Assignment to the Module	Prof. DrIng. Christine Wünsche N-09 Advanced Mathematics	
Assignment to the	Applied Physics (Bachelor)	
Curriculum	Applied Filysics (Bachelol)	
	General	
Study Focus Semester	4	
Credit Hours	4	
	5	
Credit Points (ECTS) Workload		
WORKIOAD	150h: attendance 60h, homework 60h, exam	
Eveningtion Denformance	preparation 30h	
Examination Performance	See module	
Final Grade Formation	See module	
	German	
Teaching Methods	Lectures with integrated example exercises,	
Madia Farma	homework	
Media Forms	Writing on the board in combination with a script	
Literature	Papula, L., Mathematik für Ingenieure und	
	Naturwissenschaftler, Vieweg Verlag, Wiesbaden,	
	2009 Demula I. Mathematicales Formerlander für	
	Papula, L., Mathematische Formelsammlung für	
	Ingenieure und Naturwissenschaftler, Vieweg Verlag,	
	Wiesbaden, 2009	
	Stroud, K.A., Dexter J. Booth: <i>Engineering</i>	
	<i>Mathematics</i> , 7. Auflage, Industrial Press, New York, 2013	
	Stroud K.A., Dexter J. Booth: <i>Advanced Engineering</i>	
	Mathematics, 5. Auflage, Palgrave Macmillan, New	
	York, 2011	
Module Head	Prof. DrIng. Christine Wünsche	
Content	Students gain formal and mathematical competencies	
content	so that they can formally describe problems from	
	vector analysis.	
	Content:	
	 Vector analysis 	
	 Scalar and vector fields 	
	 Gradient of a scalar field 	
	 Divergence and rotation of a vector field 	
	 Line and curve integrals 	
	 Surface integrals 	
	 Integral theormes by Gauß and Stokes 	

Module N-10 Advanced Physics

Module	N-10
Module Name	Advanced Physics
Module Components	N3103 Physics III
(courses)	N4102 Physics IV
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	12
Valuation Mode	Total Module Examination (Grade of the module is weighted according to the ECTS credits of the module components): Written exam 90 min
Module Head	Prof. Dr. Thomas Stirner
Admission resp.	N1102 Physics I
Recommended	N2102 Physics II
Prerequisites	
Learning Objectives	Prime learning objective: students gain profound knowledge in the areas of electrodynamics and modern physics. Thereto, students gain the following competencies: Understanding physical basics in the areas of electricity, magnetism and light, as well as modern physics with the topics theory of relativity, quantum physics, quantum mechanics, solid-state physics and introduction into particle physics.
	Ability to analyze natural systems and processes on the base of physical main ideas, to describe them with the respective physical laws and to conduct calculations for given system parameters, right up to the interpretation of results. Ability to work in a team from a professional perspective (i.e. creating the preconditions to a professional discussion with colleagues from related scientific fields like for example engineers, chemists, etc.)

Course	N3103
Name	Physics III
Instructors	Prof. Dr. Thomas Stirner
Assignment to the Module	N-10 Advanced Physics

Semester	3
Credit Hours	6
Credit Points (ECTS)	6
Workload	180h: attendance 90h, homework 45h, exam preparation 45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures with integrated example exercises,
	homework
Media Forms	Projector, writing on the board in combination with a
	script
Literature	 Tipler P.A., Mosca G., <i>Physik für</i> <i>Wissenschaftler und Ingenieure</i>, 6. Auflage, Spektrum Akademischer Verlag, München, 2009 Mills D. et al., <i>Arbeitsbuch zu Tipler/Mosca</i>, 2. Auflage, Spektrum Akademischer Verlag, München, 2009
Module Head	Prof. Dr. Thomas Stirner
Content	Students gain an understanding for physical connections and the ability to mathematically model physical phenomena of electrostatics and electrodynamics. Students apply their physical knowledge when solving formal tasks. Content: • Electric fields • Discrete and continuous charge distribution • The electric potential • Electrostatic energy • Capacity • Electric current – DC circuits • The magnetic field • Sources of a magnetic field • The magnetic induction • Maxwell's equations • Electromagnetic waves • Properties of light • Interference and diffraction
Course	N4102
Name	Physics IV
Instructors	Prof. Dr. Thomas Stirner
Assignment to the Module	N-10 Advanced Physics
Assignment to the Curriculum	Applied Physics (Bachelor)
Study Focus	General
·····	

Semester	4
Credit Hours	6
Credit Points (ECTS)	6
Workload	180h: attendance 90h, homework 45h, exam
	preparation 45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures with integrated example exercises,
	homework
Media Forms	Writing on the board in combination with a script
Literature	Tipler P.A., Mosca G., Physik für
	Wissenschaftler und Ingenieure, 6. Auflage,
	Spektrum Akademischer Verlag, München, 2009
	Mills D. et al., Arbeitsbuch zu Tipler/Mosca, 2.
	Auflage, Spektrum Akademischer Verlag, München,
	2009
Module Head	Prof. Dr. Thomas Stirner
Content	Students gain an understanding for physical connections and the ability to mathematically model physical phenomena of the theory of relativity and quantum mechanics. Students apply their physical knowledge when solving formal tasks.
	Content: • Theory of relativity • Wave-particle duality • Quantum physics • Applications of Schrödinger equations • Solid-state physics • Elementary particles and the origin of the universe

Module N-11 Measurement Engineering

Module	N-11
Module Name	Measurement Engineering
Module Components	N3104 Measurement Engineering
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	6
Valuation Mode	Total module examination
	Written exam 90 min.

Module Head	Prof. Dr. Josef Kölbl
Prerequisites	Lectures: Physical and mathematical basics
	Practical training: 42 ECTS credits; two of the three exams N1101 Analytical Foundations of Engineering Studies, N1102 Physics I and N1104 Foundations of Electrical Engineering I
Learning Objectives	Knowledge of the principles of measurement technology, application of bridge circuits for the evaluation of sensor signals, ability to describe systematic and random errors and to assess the influence of several error sources on measurement results. Application of numeric methods like for example measurement statistics, curve-fitting, DFT, correlation functions.

Course	N3104
Name	Measurement Engineering
Instructors	Prof. Dr. Josef Kölbl
Assignment to the Module	N-11 Measurement Engineering
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	3
Credit Hours	6 (4 lectures + 2 practical training)
Credit Points (ECTS)	6
Workload	180h: lectures with exercises 60h, practical training
	30h, practical training preparation and follow-up 45h,
	homework 20h, exam preparation 25h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises, practical
	training
Media Forms	Board, projector, overhead projector
Literature	Parthier, R., Messtechnik, 6. Auflage, Vieweg,
	Wiesbaden, 2012
	Profos P., Pfeifer T., Grundlagen der Messtechnik, 5.
	Auflage, Oldenbourg-Verlag, München, 1997
Module Head	Prof. Dr. Josef Kölbl
Content	Students are able to assess the limits of a
	measurement, know the basic circuits and principles
	measurement, know the basic circuits and principles

[]	
	of measurement technology and are able to design
	and dimension measure arrangements.
	Content:
	o Measuring: measurement parameters, unit system
	 Measurement signals: classification and
	conversion, characterization
	 Measurement methods: amplitude, difference
	method, compensation
	• Measuring devices: basic structure, static and
	dynamic parameters
	 Evaluation of measurement results: deviations,
	error propagation of systematic and random
	deviations; types of errors
	 Measuring electric parameters: electricity,
	voltage, resistance, capacity, inductivity
	 Measuring non-electric parameters: time and
	frequency (setup of Cs and Rb atomic clocks)
	 Measurement technology of operational amplifiers
	 Structure and effect of a oscilloscope
	 Analogue and digital converters
	 Numeric procedures (measurement statistics,
	curve-fitting, DFT, FFT)
	 Correlation of signals (application in GPS, VLBI)

Module N-12 Microcomputer Technology

Module	N-12
Module Name	Microcomputer Technology
Module Components	N3105 Microcomputer Technology
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	5
Valuation Mode	Total module examination:
	Written exam 90 min.
Module Head	Prof. Dr. Robert Bösnecker
Prerequisites	Lectures:
	N-01 Foundations of Mathematics
	N-06 Informatics
	Practical training:
	At least 42 ECTS credits; two of the three exams
	N1101 Analytical Foundations of Engineering Studies,

	N1102 Physics I and N1104 Foundations of Electrical Engineering I need to be passed.
Learning Objectives	 Students know the hardware structure and function of microprocessors and microcontrollers They understand the structure and the application possibilities of the most important memory and peripheral components They learn basic abilities for the development, setup and programming of microcomputer systems

Course	N3105
Name	Microcomputer Technology
Instructors	Prof. Dr. Robert Bösnecker
Assignment to the Module	N-12 Microcomputer Technology
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	3
Credit Hours	4 (2 lectures + 2 practical training)
Credit Points (ECTS)	5
Workload	150h: lectures 30h, microcontroller laboratory 30h, laboratory preparation and follow-up 35h, homework 25h, exam preparation 30h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises, practical training
Media Forms	Board, projector, overhead projector
Literature	Script
Module Head	Prof. Dr. Robert Bösnecker
Content	Students gain the ability to program "Embedded Systems". Students gain competencies in the area of realization of complex microcomputer systems in hard and software.
	 Content: Structure and function of a simple microcontroller using the example of the Atmel AVR/ARM family Layout of an own printed circuit board Programming microcontrollers (assemblers, compilers, interpreters, IDE, typical program examples) Typical error sources of microcontroller programs, debugging programs

0	DEGGENDORF INSTITUTE OF TECHNOLOGY
	microcontrollers
0	Structures and abilities of greater microcontrollers
0	Insight into RISC/CISC architectures and DSP
	structures, criteria for the evaluation and selection
	of microcontrollers when used practically

Module N-13 Digital Technology

Module	N-13
Module Name	Digital Technology
Module Components (LV)	N3106 Digital Technology
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	6
Valuation Mode	Total module examination
	Written exam 90 min.
Module Head	Prof. Dr. Robert Bösnecker
Prerequisites	Lectures:
	N-04 Foundations of Electrical Engineering
	N-06 Informatics
	Practical training:
	42 ECTS credits; two of the three exams N1101
	Analytical Foundations of Engineering Studies, N1102
	Physics I and N1104 Foundations of Electrical
	Engineering I
Learning Objectives	 Knowledge of the basics of digital circuits
	 Ability to synthesize and analyze digital systems
	• Knowledge of the advantages and disadvantages of
	various digital circuit families
	 Installation and start-up of digital circuits in lab
	experiments
	 Getting familiar with typical measurements on
	digital circuits

	N3106
Course	
Name	Digital Technology
Instructors	Prof. Dr. Robert Bösnecker
Assignment to the Module	N-13 Digital Technology
Assignment to the	Applied Physics (Bachelor)
Curriculum	Applied Filysics (Bachelol)
Study Focus	General
Semester	3
Credit Hours	4 (2V + 2P)
Credit Points (ECTS)	6
Workload	180h: lectures 30h, digital technology laboratory 30h,
WORKIOAG	laboratory preparation and follow-up 45h, homework
	35h, exam preparation 40h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises, practical
	training
Media Forms	Board, projector, overhead projector
Literature	
	Scarbata G., Synthese und Analyse digitaler
	Schaltungen, Oldenbourg, München, 2001
	Pernards P., <i>Digitaltechnik</i> , Hüthig, Heidelberg, 2001
	Hoffmann D. W., Grundlagen der Technischen
	Informatik, Hanser, München, 2013
Module Head	Prof. Dr. Robert Bösnecker
Content	 Theorems and laws of switching algebra
	 Switching function (normal forms of switching functions, minimization of switching functions)
	 Combinational circuits (general design guidelines, code converters, comparators, multiplexors and demultiplexors, adders, dynamic behavior of combinational circuits)
	 Flip-flop, bistable triggers (basis-RS-flip-flop, D- flip-flop, JK-flip-flop, conversion of flip-flop)
	 Counters (design of parallel counters, electric switches, latches)
	 Sequential switching, switchgears, digital automates (description and design of switchgears, switchgear of the change machine, operational modes of automates, types of automates, completeness and consistency, equivalence of Moore and Mealy automates, inventory reduction, coding of automates, design of complex circuits on the base of Moore and Mealy automates

TECHNOLOGY
 Electronic realization of logic functions (CMOS logic families)
o Programmable logic circuitso Principle structure

Module N-14 Control Engineering

Module	N-14
Module Name	Control Engineering
Module Components	N4103 Control Engineering
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	5
Valuation Mode	Total module examination
	Written exam 90 min
Module Head	Prof. DrIng. Peter Firsching
Recommended	N-01 Foundations of Mathematics
Prerequisites	N-04 Foundations of Electrical Engineering
	N-11 Measurement Technology
Learning Objectives	 Familiarity with the modelling of simple
	mechatronic systems in the state space,
	 Getting familiar with the most important properties
	of simple transfer functions
	• Master the application of algebraic stability criteria
	to controlled systems and closed loop systems
	 Abilities for stability testing according to Nyquist
	 Recognition of advantages and disadvantages of
	design methods my means of "frequency
	characteristics" and "root locus"
	• Furthermore, students are to be able to create
	simple simulation models with MATLAB and
	SIMULINK and to solve the described design tasks.

Course	N4103

Name	Control Engineering
Instructors	Prof. DrIng. Peter Firsching
Assignment to the Module	N-14 Control Engineering
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	4
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation
	45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, demonstrations with
	MATLAB, SIMULINK on the projector
Literature	Unbehauen H., Regelungstechnik 1, 14.Auflage,
	Vieweg, Wiesbaden, 2007
	Dorf R. C., Bishop R. H., <i>Moderne Regelungssysteme</i> ,
	Pearson-Deutschland, München, 2006
Module Head	Prof. DrIng. Peter Firsching
Content	 Basic terms, measurement principles and
	measurement chains
	 Modelling mechatronic systems
	 Repetition Laplace transformation
	 Linearization, inoperative state, transmission
	function
	 Creation, conversion of block diagrams
	• Properties of selected transmission functions of 1.
	and 2. order in the time and frequency domain
	 Influence of nulls on system dynamics
	• BIBO stability, proof according to Hurwitz / Routh
	Bode diagram and Nyquist locus
	 Closed loop system and its properties, permanent
	control deviation
	• General and special Nyquist criterion in locus and
	Bode diagram, root locus according to Evans, main
	features of the design by means of WOK to
	dominant pole pairs
	 Parameterization of PID controller with frequency response and locus design

Module N-15 Microsystems Technology

Module	N-15
Module Name	Microsystems Technology
Module Components	N4104 Microsystems Technology
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	5
Valuation Mode	Total module examination
	Written exam 90 min
Module Head	Prof. Raimund Förg
Recommended	N-04 Foundations of Electrical Engineering
Prerequisites	N-06 Informatics
	N-12 Microcomputer Technology
Learning Objectives	 Students gain basic knowledge about application areas and production procedures of microsystems They learn methods for the production of microsystems, resp. the production of
	 transistors on silicon basis Gaining a functional understanding of microsystems and acquisition of the ability to practically apply integrated circuits and systems.

Course	N4104
Name	Microsystems Technology
Instructors	Prof. Raimund Förg
Assignment to the Module	N-15 Microsystems Technology
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	4
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation 45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, projector, overhead projector
Literature	Widmann D., Mader H., Friedrich H., Technologie
	hochintegrierter Schaltungen, 2. Auflage, Springer,
	Berlin, 1996
	Hoppe B., Mikroelektronik 1 und 2, Vogel, Würzburg, 1997
	Gerlach G., Dötzel W., Einführung in die
	Mikrosystemtechnik, Hanser Verlag, München, 2006
	Brück R., Rizvi N., Schmidt A., Angewandte Mikrotechnik,
	Hanser, München, 2001
	Chang C. Y., Sze S. M., ULSI Technology, McGraw-Hill,
	Singapore, 1996
Module Head	Prof. Raimund Förg

Content	 Introduction and motivation, development of the IC
	market, overview: electronic circuits and IC
	technologies
	 Band model, Fermi energy, impurity atoms
	• Metal semiconductor contacts (Schottky contacts), pn
	junction
	 MOS capacitor, MOS transistor
	 Bipolar transistor
	 Semiconductor technology and microfabrication,
	production of monocrystalline silicon wafers, doping
	semiconductor material
	 Layer technology, SiO₂ layers, epitaxial layers
	 CVD surface layers, etching and cleaning technology, overall process
	 Housing technology, structure minimization and
	development trends in CMOS technology
	 Microsystems technology, sensors, actuators,
	integrated systems
	 Design and layout of integrated circuits

Module N-16 Foundations of Optoelectronics

Module	N-16
Module Name	Foundations of Optoelectronics
Module Components	N4105 Optoelectronics /Laser Technology 1
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	5
Valuation Mode	Total module examination
Module Head	Prof. Dr. Franz Daiminger
Recommended	N-02 Foundations of Physics
Prerequisites	N-03 Applied Physics
Learning Objectives	 Knowledge of the elementary processes of light development and the interaction of light and matter
	 Theoretic understanding about the functionality of a laser. The student is therefore supposed to be able to allocate the individual components of a laser to their fundamental functions
	 Knowledge about the properties and characteristics of laser radiation. The student is able to understand the given information about laser radiation in data sheets of lasers and to adjust those with the requirements of industrial applications.
	 Knowledge of the constructive structure of technical components of a laser
	 Knowledge of the operating modes of lasers and the thereby emitted laser radiation
	 Knowledge of the most important laser types and their characteristic properties. The student is able to name lasers that are possible to apply in various categories.

Course	N4105
Name	Optoelectronics/Laser Technology 1
Instructors	Prof. Dr. Franz Daiminger
Assignment to the Module	N-16 Foundations of Optoelectronics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	4

Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation 45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises, practical trainings
Media Forms	Board, projector, overhead projector, experiments during lectures and demonstration objects
Literature	 Eichler J., Eichler H. J., <i>Laser</i>, 7. Auflage, Springer, Berlin, 2010 Meschede D., <i>Optics, Light and Lasers</i>, 2. Auflage, Wiley VCH, Weinheim, 2006 Hecht E., <i>Optik</i>, 5. Auflage, Oldenbourg, München, 2009
Module Head	Prof. Dr. Franz Daiminger
Content	 Light, atoms, molecules, solid bodies and black radiator Absorption, spontaneous emission, stimulated emission, linewidth Principle structure and functionality of a laser, balance equations Propagation of light, Gaussian beam and its transformation, the beam parameter product Optical resonators, longitudinal, transversal modes and coherence Pulsed operating modes of lasers, relaxations oscillation, Q switch, Cavity Dumping, Modelocking, compression of pulses Most important types of lasers, overview laser applications Practical experiments parallel to lectures

Module N-17 Statistics

Module	N-17
Module Name	Statistics
Module Components	N4106 Statistics
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	

Study Focus	General
Credit Points (ECTS)	5
Valuation Mode	Total module examination
	Written exam 90 min
Module Head	Prof. Dr. Peter Ullrich
Recommended	N-01 Foundations of Mathematics
Prerequisites	N-11 Measurement Technology
Learning Objectives	 Students are able to solve self-reliantly simple statistical problems from scientific and engineering practice Students master the methods of errors computation, in particular with error propagation of random errors Students are able to classify influences of stochastic nature to measurement chains and to approximately compute their impact.

Course	N4106
Name	Statistics
Instructors	Prof. Dr. Peter Ullrich
Assignment to the Module	N-17 Statistics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	4
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation
	45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, projector
Literature	Wird in der Vorlesung bekanntgegeben
Module Head	Prof. Dr. Peter Ullrich
Content	Introduction into the methods of statistics, as far as
	they are necessary for scientific and engineering
	applications.
	Content:
	 Introduction and overview
	 Descriptive statistics
	 Basic terms of probability calculus
	o Inferential statistics
	• Application examples from engineering practice
	(e.g. quality control, FMEA, design of experiments
	and test evaluation)
	• Application of statistical methods to sensors,
	measurement technology and quality management

Module N-18 Optical Materials

Module	N-18
Module Name	Optical Materials
Module Components	N5101 Optical Materials
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Optical Technologies
Credit Points (ECTS)	5
Valuation Mode	Total module examination
	Written exam 90 min
Module Head	Prof. Dr. Michael Moritz
Recommended	N-03 Applied Physics
Prerequisites	N-05 Chemistry and Materials
	N-10 Advanced Physics
Learning Objectives	 Supposed to be a foundation lecture so that
	future physics engineers understand and are
	able to evaluate the meaning of modern
	production and the applied optical materials,
	and the possible difficulties when dealing with
	and designing production equipment
	 Special focuses are the materials that are
	applied when manufacturing optical
	components.

Course	N5101
Name	Optical Materials
Instructors	Prof. Dr. Michael Moritz
Assignment to the Module	N-18 Optical Materials
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Optical Technologies
Semester	5
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation
	45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, projector
Literature	See script for literature list

Module Head	Prof. Dr. Michael Moritz
Content	 The selection of appropriate optical materials is of major significance regarding the functionality of optical components and the modules produced from that. The economic success of a optomechatronic system substantially depends on the selection of appropriate materials. The lectures are supposed to impart knowledge of the materials and their properties in technology and application. With that knowledge, the selection of materials should take place in a profound way. The respective material-specific properties are discussed by means of examples. Focuses are the optical and other properties of materials and their description resp. classification.

Module N-19 Advanced Optoelectronics

Module	N-19
Module Name	Advanced Optoelectronics
Module Components	N5102 Optoelectronics/Laser Technology 2
(courses)	N5103 Optical Sensor Technology and Measurement
	Engineering
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Optical Technologies
Credit Points (ECTS)	8
Valuation Mode	Total Module Examination (Grade of the module is
	weighted according to the ECTS credits of the module
	components):
	Written exam 90 min
Module Head	Prof. Dr. Franz Daiminger
Recommended	N-11 Measurement Engineering
Prerequisites	N-16 Foundations of Optoelectronics
Learning Objectives	Students are supposed to have extended knowledge of
	manipulation of light. With that knowledge, they have
	the precondition to understand many existing technical
	solutions in laser technology, optical sensor technology
	and optical measurement technology.

0	Ability to work self-reliantly on new solutions
	after a certain training period
0	Students are supposed to understand the
	theoretical basics of the structure and the
	formation of light in optoelectronic
	semiconductor components and to have
	knowledge about the structure and
	characteristics of the most important
	semiconductor lasers and light-emitting
	diodes.
0	Understanding and application of sensor
	measurement principles in optical
	measurement engineering
0	Ability to assess measurement problems in
	optical sensor technology
0	Ability to select in an application-oriented
	way the measurement principles for special
	tasks and assessment of the implementation
	possibility.
0	Detailed knowledge and understanding for
	applications of optical sensor technology and
	measurement technology
0	Understanding optoelectronic systems, laser
	measurement technology and optical
	measurement technology

Course	N5102
Name	Optoelectronics/Laser Technology 2
Instructors	Prof. Dr. Franz Daiminger
Assignment to the Module	N-19 Advanced Optoelectronics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Optical Technologies
Semester	5
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures 60h, homework 30h, exam preparation
	30h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, projector, demonstration
	objects
Literature	Eichler J., Eichler H. J., Laser, 7. Auflage, Springer,

	Parlin 2010	
	Berlin, 2010	
	Bludau W., <i>Halbleiter-Optoelektronik</i> , Hanser,	
	Leipzig, 1995	
	Schubert E. F., <i>Light emitting diodes</i> , 3. Auflage,	
	Cambridge University Press, Cambridge, 2010	
Module Head	Prof. Dr. Franz Daiminger	
Content	Students gain profound knowledge of optoelectronic	
	systems and their application.	
	Content:	
	 Modulation and deflection of light 	
	 Frequency selection in lasers 	
	 Mirrors and coatings 	
	 Frequency transformation (creation of sum and 	
	difference frequencies, creation of higher harmonic	
	and other non-linear effects)	
	 Radiative and non-radiative recombination in 	
	semiconductors	
	 Semiconductor heterostructures 	
	• Design of light-emitting diodes and semiconductor	
	lasers	
	• Parameters and properties of semiconductor lasers	
	and light-emitting diodes	
	 Special semiconductor lasers and light-emitting 	
	diodes	
	 Aging behavior of optoelectronic semiconductor 	
	components	
	 Micro-optics for diode lasers 	
	o Photodetectors	
	 Beam characterization 	

Course	N5103
Name	Optical Sensor Technology and Measurement
	Engineering
Instructors	DiplIng. (FH) Paul Schötz
Assignment to the Module	N-19 Advanced Optoelectronics
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Optical Technologies
Semester	5
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures 60h, homework 30h, exam preparation
	30h
Examination Performance	See module
Final Grade Formation	See module

Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, projector
Literature	Script
Module Head	Prof. Dr. Franz Daiminger
Content	Students gain an understanding of sensor
	measurement principles and their application.
	Students are able to assess measurement problems in
	optical sensor technology and to select appropriate
	measurement principles for special tasks.
	Content:
	 Basics of ray and wave optics
	o Interference
	o Deflection
	 Light sources and detectors
	 Holography
	 Optoelectronic distance measurement
	o Spectroscopy
	 Speckle methods
	 Polarization and its application
	 Optical fibres in measurement technology
	 Time-resolved measurements

Module N-20 Production Engineering Optics

Module	N-20
Module Name	Production Engineering Optics
Module Components	N5104 Production Engineering Optics
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Optical Technologies
Credit Points (ECTS)	9
Valuation Mode	Total module examination:
	Written exam 90 min and grade from practical training
	with weighting 3:1
Module Head	Prof. DrIng. Christine Wünsche
Recommended	N-03 Applied Physics
Prerequisites	N-10 Advanced Physics
	N-11 Measurement Engineering
	N-05 Chemistry and Materials
Learning Objectives	Prime learning objective: students gain knowledge in

lect	cal production engineering by means of theoretical ures and also during a lecture-accompanying ctical training.
	 reto, students gain the following competencies: Supposed to be a foundation lecture so that future physics engineers understand and are able to evaluate the meaning of modern production and the applied optical materials, and the possible difficulties when dealing with and designing production equipment. With the knowledge from that module, physics engineers are supposed to implement the conception and design of production equipment with technical expertise and in an optimized way for the manufacturing task. Special focuses are standard procedures applied in manufacturing of optical components.

Course	N5104	
Name	Production Engineering Optics	
Instructors	Prof. DrIng. Christine Wünsche und	
	Prof. DrIng. Rolf Rascher	
Assignment to the Module	N-20 Production Engineering Optics	
Assignment to the	Applied Physics (Bachelor)	
Curriculum		
Study Focus	Optical Technologies	
Semester	5	
Credit Hours	8 (4V + 4P)	
Credit Points (ECTS)	9	
Workload	270h: lectures 60h, practical training 60h, practical	
	training preparation and follow-up 50h, homework	
	50h, exam preparation 50h	
Examination Performance	See module	
Final Grade Formation	See module	
Language	German	
Teaching Methods	Lectures, seminar-like lessons, exercises, practical	
	training	
Media Forms	Board, overhead projector, projector	
Literature	See script for literature list	
	Bliedtner J., Gräfe G., Optiktechnologie, Hanser,	
	München, 2010	
Module Head	Prof. DrIng. Christine Wünsche	
Content	 Production technology is of major significance 	
	when producing optical components with high	
	precision. The lectures are supposed to impart	

knowledge about the technology and
application of modern procedures in optical
production engineering.
 The respective procedure and calculation
basics and characteristics are discussed by
means of examples.
• The ability to select the production procedures
according to economic conditions and for the
implementation of work planning is supposed
to be achieved by the acquired knowledge and
process-based manufacturing basics.
 Focuses are the procedures of grinding and
polishing of optical surfaces as well as selected
procedures including form generation and the
related measurement technology.

Module N-21 Project Work

Module	N-21
Module Name	Project Work
Module Components	N5105 Project Work
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Optical Technologies
Credit Points (ECTS)	6
Valuation Mode	Total module examination:
	Project work and presentation
Module Head	Prof. Dr. Thomas Stirner
Recommended	N-08 Presentation Techniques
Prerequisites	N-11 Measurement Engineering
Learning Objectives	 Get to know the methods and procedures in project
	management
	 Analyze and structure solutions for problems in a
	small team self-reliantly, distribute and work on
	tasks in the team, achieve and present plausible
	results
	 Practically apply knowledge gained in lectures
	 Complex tasks are distributed into working
	packages and are worked on together and in
	parallel. The information exchange between team
	members demands communication and cooperation
	skills (ability to work in a team).
	 A self-reliant formulation of specific working

objectives after new interim results (proposals for
realignment) and their discussion require a
strategic overview and assessment of one's own
contribution to the team.
 Working on one's own task, the required
documentation and the presentation of results in
the group promote team discipline and
collaboration.
 Methodical and systematic proceedings when
working on a comprehensive, complex problem.

Course	N5105	
Name	Project Work	
Instructors	Several lecturers:	
	Reclassification (semester start) for each project	
	group	
Assignment to the Module	N-21 Project Work	
Assignment to the	Applied Physics (Bachelor)	
Curriculum		
Study Focus	Optical Technologies	
Semester	5	
Credit Hours	4	
Credit Points (ECTS)	6	
Workload	180h: supervised attendance 60h, other workload	
	60h, preparation of documentation and presentation	
	60h	
Examination Performance	See module	
Final Grade Formation	See module	
Language	German	
Teaching Methods	Project work with subtasks for each student	
Media Forms	Team meetings, interim and final presentation	
Literature	Project specific	
Module Head	Prof. Dr. Thomas Stirner	
Content	 Projects and/or subtasks within a project can be theoretically (e.g. literature research, program development, data collection, project management), experimentally (e.g. measurements) or constructively based. The project tasks are announced at the beginning of the semester. Afterwards, the distribution into groups takes place. Students achieve results that they document in the form of a report and present in a presentation. 	

Module N-22 Innovation

Module	N-22
Module Name	Innovation
Module Components	N5106 Innovations Management
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Optical Technologies
Credit Points (ECTS)	2
Valuation Mode	Total module examination:
	Written exam 90 min
Module Head	Prof. Dr. Thomas Bartscher
Recommended	
Prerequisites	
Learning Objectives	Imparting basics on the subject of innovations
	management and business development. Students are
	to be able to understand the importance of a
	continuous and structured active corporate
	development and to specifically select and apply
	suitable management instruments in professional
	practice. By imparting basic elements of innovations
	management, students are to be put in the position to
	analyze the innovation process in a company, to
	recognize opportunities and risks of innovation and to
	actively form the innovations management of a
	company.

Course	N5106
Name	Innovations Management
Instructors	Prof. Dr. Thomas Bartscher
Assignment to the Module	N-22 Innovation
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Optical Technologies
Semester	5
Credit Hours	2
Credit Points (ECTS)	2
Workload	60h: attendance 30h, self-study 15h, exam
	preparation 15h
Examination Performance	See module
Final Grade Formation	See module
Language	German

Teaching Methods	Seminar-like lessons and exercises
Media Forms	Presentations, slides, board, script
Literature	 Brockhoff K., Management von Innovationen, Gabler Verlag, Wiesbaden, 1995 Strebel H., Gelbmann U., Innovations- und Technologiemanagement, Facultas-Verlag, Wien, 2007 Glazinski B., Strategische Unternehmens- entwicklung, Gabler Verlag, Wiesbaden, 2004 Wittmann R. G., Innovation erfolgreich steuern, Verlag Redline Wirtschaft, Heidelberg, 2006
Module Head	Prof. Dr. Thomas Bartscher
Content	 Basic terms and tasks of innovations management Dimensions of innovation Innovation process Innovations-strategic decision errors and opportunity evaluation Introduction into Business Development Basics of technology management Industrial property rights Growth and sustainability management Business modelling and business field planning Assessment procedures and investment calculation Business development through Corporate Venturing

Module N-23 Optical Technologies

Module	N-23
Module Name	Optical Technologies
Module Components	N7101 Optical Technologies
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Optical Technologies
Credit Points (ECTS)	5
Valuation Mode	Total module examination:
	Written exam 90 min
Module Head	Prof. DrIng. Christine Wünsche
Recommended	N-03 Applied Physics
Prerequisites	N-18 Optical Materials
	N-20 Production Engineering Optics
Learning Objectives	Prime learning objective: Students gain profound

knowledge in the area of optical technologies.
 Thereto, students gain the following competencies: Supposed to be a consecutive lecture so that future physics engineers understand and are able to evaluate the importance of optical technologies. Here, preconditions are in particular optical materials and techniques that are deployed in the production and application of optical components.

Course	N7101
Name	Optical Technologies
Instructors	Prof. DrIng. Christine Wünsche und
	Prof. DrIng. Rolf Rascher
Assignment to the Module	N-23 Optical Technologies
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Optical Technologies
Semester	7
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation
	45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, projector
Literature	See script for literature list
Module Head	Prof. DrIng. Christine Wünsche
Content	Students gain knowledge in modern optical
	technologies (e.g. in optical data transfer, information
	and communication technology) and their application.
	Students gain the ability to select suitable optical
	technologies for special areas of tasks.
	Content:
	 Distance measurement through travel time
	measurement of optical impulses
	• Optical data transfer
	 Optical information and communication
	technology
	• Development of new production and
	measurement technologies for the optical

Module N-24 Continuative Procedures

Module	N-24
Module Name	Continuative Procedures
Module Components	N7102 Photonics
(courses)	N7103 Spectroscopy
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Optical Technologies
Credit Points (ECTS)	10
Valuation Mode	Total Module Examination (Grade of the module is
	weighted according to the ECTS credits of the module
	components):
	Written exam 90 min
Module Head	Prof. Dr. Michael Moritz
Recommended	N-03 Applied Physics
Prerequisites	N-10 Advanced Physics
	N-17 Statistics
	N-18 Optical Materials
Learning Objectives	 Overview of the basic concepts, methods,
	models as well as technical realizations and
	experimental applications of photonics and
	spectroscopy
	 Creation of the connection between the
	theoretical terms and results of photonics
	and spectroscopy with experimental results
	 Knowledge of key experiments and
	experimental techniques/measurement
	methods of photonics and spectroscopy
	 Detailed knowledge and understanding for
	systems and applications of photonics and
	spectroscopy: development of optical
	systems, laser development, laser
	measurement technology, microscopic
	procedures, laser materials processing,

	optical measurement technology and optical
	telecommunications
Course	N7102
Name	Photonics
Instructors	Prof. Dr. Michael Moritz
Assignment to the Module	N-24 Continuative Procedures
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Optical Technologies
Semester	7
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation
	45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Lehrform	Vorlesung, Seminaristischer Unterricht, Übung
Media Forms	Board, overhead projector, projector, demonstration
	objects
Literature	 Reider G. A., Photonik: Eine Einführung in die Grundlagen, 2. Auflage, Springer, Wien, 2005 Hering E., Martin R., Photonik: Grundlagen, Technologie und Anwendung, 1. Auflage, Springer Verlag, Wien, 2006 Saleh B.E.A., Teich M.C., Fundamentals of Photonics (Wiley Series in Pure and Applied Optics), 2. Auflage, Wiley, New Jersey, 2007
Module Head	Prof. Dr. Michael Moritz
Content	Students gain knowledge about the basic terms of photonics. Students are able to apply the gained knowledge to special fields of tasks (e.g. optical fibers, light technology etc.).
	Content: • Geometric optics • Wave and ray optics • Fourier optics • Propagation in media • Polarization / optical and photonic crystals • Optical wave guides / optical fibers • Statistical optics • Photon optics • Lasers • Electro- and acoustooptics • Lighting engineering • Applications

Course	N7103
Name	Spectroscopy
Instructors	Prof. Raimund Förg
Assignment to the Module	N-24 Continuative Procedures
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Optical Technologies
Semester	7
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation 45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, projector
Literature	 Böcker J., Spektroskopie, Vogel Verlag, Würzburg, 1997 Skrabal P. M., Spektroskopie – Eine methoden- übergreifende Darstellung vom UV- bis zum NMR- Bereich, vdf Hochschulverlag AG, Zürich, 2009 Demtröder W., Laserspektroskopie: Grundlagen und Techniken, 5. Auflage, Springer, Berlin, 2007 Haken H., Wolf H. C., Molekülphysik und Quantenchemie, 5. Auflage, Springer, Berlin, 2006
Module Head	Prof. Dr. Michael Moritz
Content	Students gain knowledge and understanding of the basic terms of spectroscopy and its different application forms. Students are able to select suitable spectroscopic procedures for special tasks.
	 Content: Physical foundations: atomic spectroscopy, molecular spectroscopy, line spectra, band spectra, selection rules, occupation numbers Classical spectroscopy Kinds of spectroscopy: infrared spectroscopy, UV/Vis spectroscopy, Raman spectroscopy, fluorescence spectroscopy, X-ray spectroscopy, atomic absorption, mass, NMR; RFA, Auger spectroscopy, etc. Applications of spectroscopy

Module N-25 Industrial Sensor Systems

Module	N-25
Module Name	Industrial Sensor Systems
Module Components	N5111 Industrial Sensor Systems
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Sensory Systems
Credit Points (ECTS)	6
Valuation Mode	Total module examination:
	Written exam 90 min
Module Head	Prof. Raimund Förg
Recommended	N-10 Advanced Physics
Prerequisites	N-11 Measurement Engineering
	N-14 Control Engineering
	N-17 Statistics
Learning Objectives	 Sound knowledge of metrological terms and
	physical units
	 Knowledge of fundamental measurement
	principles
	 Students dispose of knowledge concerning
	procedures for measuring electric and non-
	electric parameters
	 Knowledge of the fundamental structure of
	various sensor types which are relevant for
	industrial applications
	 Students are able to select sensors that are
	suitable for a metrological problem
	 Students are able to classify influences of
	stochastic nature to measuring chains and to
	approximately calculate their effect.

Course	N5111
Name	Industrial Sensor Systems
Instructors	Prof. Raimund Förg
Assignment to the Module	N-25 Industrial Sensor Systems
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Sensory Systems
Semester	5
Credit Hours	6
Credit Points (ECTS)	6
Workload	180h: lectures 90h, homework 45h, exam preparation
	45h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, projector
Literature	Schiessle E., Industriesensorik, Vogel, Würzburg,
	2010
	Parthier R., Messtechnik, 7. Auflage, Springer,
	Wiesbaden, 2014
	Lambert M., Grundlagen der Sensortechnik, Elektor
	Verlag, Aachen, 1991
	Kleger R., Sensorik für Praktiker, 2. Auflage,
	VDE-Verlag, Düsseldorf, 2008
Module Head	Prof. Raimund Förg
Content	Students gain knowledge and understanding of the
	basic terms of sensors and their different application
	forms. Students are able to select suitable sensors for
	special industrial tasks.
	Content:
	 Basics of sensor systems
	 Assessment of measurement deviations/
	measurement errors
	• Sensor elements of measurement technology
	 Industrial sensors for measurement and control of abarrage of any improvemental, biological and technical
	changes of environmental, biological and technical
	systems
	 Sensors for geometry, power, vibration, tomporature and flow measurement
	temperature and flow measurementActuators
	 Actuators Laboratory, industrial and automatized measuring
	systems
	Systems

Module N-26 Advanced Sensor Systems

Module	N-26		
Module Name	Advanced Sensor Systems		
Module Components	N5112 High-frequency Sensor Systems		
(courses)	N5103 Optical Sensor Systems and Measurement		
	Engineering		
Assignment to the	Applied Physics (Bachelor)		
Curriculum:			
Study Focus	Sensory Systems		
Credit Points (ECTS)	12		
Valuation Mode	Total Module Examination (Grade of the module is		
	weighted according to the ECTS credits of the module		
	components):		
	Written exam 90 min		
Module Head	Prof. Dr. Josef Kölbl		
Recommended	N-11 Measurement Engineering		
Prerequisites	N-14 Control Engineering		
	N-16 Foundations of Optoelectronics		
Learning Objectives	 Students gain extended knowledge in sensor systems. With that knowledge, they have the prerequisite to understand many existing technical solutions of high-frequency sensor systems, optical sensor systems and optical measurement technology. Ability to work self-reliantly on new solutions after a certain training period Students are to understand the theoretical basics of the structure and the functionality of sensors and to have knowledge about the structure and characteristics of the most important high-frequency sensors. Understanding and application of sensor measurement principles in optical measurement technology Ability to select measurement principles in an application-oriented way for special tasks and assessment of implementation possibilities Detailed knowledge and understanding for applications of optical sensor systems and measurement technology Understanding optoelectronic systems, laser 		

	measurement technology	
Course	N5112	
Name	High-frequency Sensor Systems	
Instructors	Prof. Dr. Josef Kölbl	
Assignment to the Module	N-26 Advanced Sensor Systems	
Assignment to the	Applied Physics (Bachelor)	
Curriculum		
Study Focus	Sensory Systems	
Semester	5	
Credit Hours	6	
Credit Points (ECTS)	8	
Workload	240h: lectures 90h, exercises 45h, homework 45h, exam preparation 60h	
Examination Performance	See module	
Final Grade Formation	See module	
Language	German	
Teaching Methods	Lectures, seminar-like lessons, exercises	
Media Forms	Board, overhead projector, projector	
Literature	 Kleger R., Sensorik für Praktiker, 2. Auflage, VDE- Verlag, Düsseldorf, 2008 Niebuhr J., Lindner G., Physikalische Messtechnik mit Sensoren, Oldenbourg, München, 2001 Meinke H. H., Gundlach F. W., Taschenbuch der Hochfrequenztechnik, Springer-Verlag, Berlin, 1992 Chang K., Microwave Solid-State Circuits And Applications, Wiley, New York, 1994 	
Module Head	Prof. Dr. Josef Kölbl	
Content	Students gain profound understanding of sensor systems, in particular in the area of high-frequency sensor systems. Students are able to calculate and dimension components of high-frequency technology. Content:	
	 Fundamentals of high-frequency sensor systems Quadripole theory and S-parameters Level computation Components in high-frequency technology (mixers, amplifiers, filters, antennas, directional coupler, etc.) Noise and noise measurement technology HF measurement technology (performance measurement, spectrum and network analyzer) Modulation Active detection of movement (RADAR and LIDAR, GPS, VLBI) 	

Transmission lines and Smith diagram

Course	N5103		
Name	Optical Sensor Systems and Measurement		
	Engineering		
Instructors	DiplIng. (FH) Paul Schötz		
Assignment to the Module	N-19 Advanced Optoelectronics		
Assignment to the	Applied Physics (Bachelor)		
Curriculum			
Study Focus	Optical Technologies		
Semester	5		
Credit Hours	4		
Credit Points (ECTS)	4		
Workload	120h: lectures 60h, homework 30h, exam preparation		
	30h		
Examination Performance	See module		
Final Grade Formation	See module		
Language	German		
Teaching Methods	Lectures, seminar-like lessons, exercises		
Media Forms	Board, overhead projector, projector		
Literature	Script		
Module Head	Prof. Dr. Josef Kölbl		
Content	Students gain an understanding of sensor		
	measurement principles and their application.		
	Students are able to assess measurement problems in		
	optical sensor systems and to select suitable		
	measurement principles for special tasks.		
	Content:		
	 Fundamentals ray and wave optics 		
	o Interference		
	o Deflection		
	 Light sources and detectors 		
	• Holography		
	 Optoelectronic distance measurement 		
	o Spectroscopy		
	• Speckle methods		
	 Polarization and its applications Optical fibers in measurement technology 		
	 Optical fibers in measurement technology 		
	 Time resolved measurements 		

Module N-27 Project Work

Module	N-27		
Module Name	Project Work		
Module Components	N5105 Project Work		
(courses)			
Assignment to the	Applied Physics (Bachelor)		
Curriculum:			
Study Focus	Sensory Systems		
Credit Points (ECTS)	6		
Valuation Mode	Total module examination		
	Project work and presentation		
Module Head	Prof. Dr. Thomas Stirner		
Recommended	N-08 Presentation Techniques		
Prerequisites	N-11 Measurement Engineering		
Learning Objectives	 Get to know the methods and procedures in project management Analyze and structure solutions for problems in a small team self-reliantly, distribute and work on tasks in the team, achieve and present plausible results Practically apply knowledge gained in lectures Complex tasks are distributed into working packages and are worked on together and in parallel. The information exchange between team members demands communication and cooperation skills (ability to work in a team). A self-reliant formulation of specific working objectives after new interim results (proposals for realignment) and their discussion require a strategic overview and assessment of one's own contribution to the team. Working on one's own task, the required documentation and the presentation of results in the group promote team discipline and collaboration. Methodical and systematic proceedings when 		

Course	N5105	
Name	Project Work	
Instructors	Several lecturers:	
	Reclassification (semester start) for each project	
	group	
Assignment to the Module	N-27 Project Work	

Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Sensory Systems
Semester	5
Credit Hours	4
Credit Points (ECTS)	6
Workload	180h: supervised attendance 60h, other workload
	60h, preparation of documentation and presentation
	60h
Examination Performance	See module
Final Grade Performance	See module
Language	German
Teaching Methods	Project work with subtasks for each student
Media Forms	Team meetings, interim and final presentation
Literature	Project specific
Module Head	Prof. Dr. Thomas Stirner
Content	 Projects and/or subtasks within a project can be
	theoretically (e.g. literature research, program
	development, data collection, project
	management), experimentally (e.g.
	measurements) or constructively based.
	 The project tasks are announced at the beginning
	of the semester. Afterwards, the distribution into
	groups takes place.
	 Students achieve results that they document in
	the form of a report and present in a presentation.

Module N-28 Innovation

Module	N-28
Module Name	Innovation
Module Components	N5106 Innovations Management
(courses)	
Assignment to the	Applied Physics (Bachelor)
Curriculum:	
Study Focus	Sensory Systems
Credit Points (ECTS)	2
Valuation Mode	Total module examination
	Written exam 90 min
Module Head	Prof. Dr. Thomas Bartscher
Recommended	
Prerequisites	
Learning Objectives	Imparting basics on the subject of innovations
	management and business development. Students are

to be able to understand the importance of a continuous and structured active corporate development and to specifically select and apply suitable management instruments in professional practice. By imparting basic elements of innovations management, students are to be put in the position to analyze the innovation process in a company, to recognize opportunities and risks of innovation and to actively form the innovations management of a company.

Course	N5106		
Course			
Name	Innovations Management		
Instructors	Prof. Dr. Thomas Bartscher		
Assignment to the Module	N-28 Innovation		
Assignment to the	Applied Physics (Bachelor)		
Curriculum			
Study Focus	Sensory Systems		
Semester	5		
Credit Hours	2		
Credit Points (ECTS)	2		
Workload	60h: attendance 30h, self-study15h, exam		
	preparation 15h		
Examination Performance	See module		
Final Grade Formation	See module		
Language	German		
Teaching Methods	Seminar-like lessons and exercises		
Media Forms	Presentations, slides, board, script		
Literature	Brockhoff K., Management von Innovationen,		
	Gabler Verlag, Wiesbaden, 1995		
	Strebel H., Gelbmann U., Innovations- und		
	Technologiemanagement, Facultas-Verlag,		
	Wien, 2007 Glazinski B., Strategische Unternehmens-		
	entwicklung, Gabler Verlag, Wiesbaden, 2004		
	Wittmann R. G., Innovation erfolgreich steuern,		
	Verlag Redline Wirtschaft, Heidelberg, 2006		
Module Head	Prof. Dr. Thomas Bartscher		
Content	• Basic terms and tasks of innovations management		
	 Dimensions of innovation 		
	 Innovation process 		
	 Innovations-strategic decision errors and 		
	opportunity evaluation		
	 Introduction into Business Development 		
	 Basics of technology management 		

0 0 0 0	Industrial property rights Growth and sustainability management Business modelling and business field planning Assessment procedures and investment calculation Business development through Corporate
	calculation

Module N-29 Optical Analytical Procedures

Module	N-29				
Module Name	Optical Analytical Procedures				
Module Components	N5113 Surface Analysis				
(courses)	N7103 Spectroscopy				
Assignment to the	Applied Physics (Bachelor)				
Curriculum:					
Study Focus	Sensory Systems				
Credit Points (ECTS)	9				
Valuation Mode	Total Module Examination (Grade of the module is				
	weighted according to the ECTS credits of the module				
	components):				
	Written exam 90 min				
Module Head	Prof. Raimund Förg				
Recommended	N-03 Applied Physics				
Prerequisites	N-10 Advanced Physics				
	N-11 Measurement Engineering				
	N-17 Statistics				
Learning Objectives	 Overview of the basic concepts, methods, 				
	models as well as technical realizations and				
	experimental applications of surface analysis				
	and spectroscopy				
	 Creation of the connection between the 				
	theoretical terms and results of surface				
	analysis and spectroscopy with experimental				
	results				
	 Knowledge of key experiments and 				
	experimental techniques/measurement				
	methods of surface analysis and				
	spectroscopy				
	 Detailed knowledge and understanding of 				
	systems and applications of surface analysis				
	and spectroscopy: surface preparation,				

surface-sensitive methods, development of optical systems, laser development, laser measurement technology, microscopic procedures, laser material processing, optical measurement technology and optical telecommunications

Course	N5113
Name	Surface Analysis
Instructors	Prof. DrIng. Christine Wünsche
Assignment to the Module	N-29 Optical Analytical Procedures
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Sensory Systems
Semester	5
Credit Hours	4
Credit Points (ECTS)	4
Workload	120h: lectures 60h, homework 30h, exam preparation 30h
Examination Performance	See module
Final Grade Formation	See module
Language	German
Teaching Methods	Lectures, seminar-like lessons, exercises
Media Forms	Board, overhead projector, projector
Literature	Somorjai G. A., Introduction to surface chemistry and catalysis, 2. Auflage, Wiley, New York, 2010 Ertl G., Reactions at solid surfaces, Wiley, New Jersey, 2009
Module Head	Prof. Raimund Förg
Content	Students gain knowledge and understanding of the methods of surface analysis and their different application forms. Students are able to select suitable procedures of surface analysis for special tasks.
	 Content: Basics of surface analysis and surface chemistry Surface preparation: methods for surface cleaning and techniques for applying further layers CVD, PECVD, PVD, MBE Surface coordination chemistry Surface-sensitive methods: microscopy, spectroscopy, deflection, kinetic methods, sorptive methods, combinations

	 XPS, AES, SIMS, ISS 		
	 Applications of surface analysis and surface 		
	chemistry		
Course	N7103		
Name	Spectroscopy		
Instructors	Prof. Raimund Förg		
Assignment to the Module	N-29 Optical Analytical Procedures		
Assignment to the	Applied Physics (Bachelor)		
Curriculum			
Study Focus	Sensory Systems		
Semester	7		
Credit Hours	4		
Credit Points (ECTS)	5		
Workload			
WORKIOAU	150h: lectures 60h, homework 45h, exam preparation 45h		
Examination Performance	See module		
	See module		
Final Grade Formation			
	German		
Teaching Methods	Lectures, seminar-like lessons, exercises		
Media Forms	Board, overhead projector, projector		
Literature	Böcker J., Spektroskopie, Vogel Verlag,		
	Würzburg, 1997		
	Skrabal P. M., Spektroskopie – Eine methoden-		
	übergreifende Darstellung vom UV- bis zum NMR-		
	Bereich, vdf Hochschulverlag AG, Zürich, 2009		
	Demtröder W., Laserspektroskopie: Grundlagen und		
	Techniken, 5. Auflage, Springer, Berlin, 2007		
	Haken H., Wolf H. C., Molekülphysik und		
	Quantenchemie, 5. Auflage, Springer, Berlin, 2006		
Module Head	Prof. Raimund Förg		
Content	Students gain knowledge and understanding of the		
	basic terms of spectroscopy and its different		
	application forms. Students are able to select suitable		
	spectroscopic procedures for special tasks.		
	Content:		
	• Physical fundamentals: atomic spectroscopy,		
	molecular spectroscopy, line spectra, band		
	spectra, selection rules, occupation numbers		
	 Classical spectroscopy 		
	 Kinds of spectroscopy: infrared spectroscopy, 		
	UV/Vis spectroscopy, Raman spectroscopy,		
	fluorescence spectroscopy, X-ray		
	spectroscopy, atomic absorption, mass, NMR,		
	RFA, Auger spectroscopy, etc.		
	 Applications of spectroscopy 		

Module N-30 Bionics

Module	N-30	
Module Name	Bionics	
Module Components	N7111 Bionics	
(courses)		
Assignment to the	Applied Physics (Bachelor)	
Curriculum:		
Study Focus	Sensory Systems	
Credit Points (ECTS)	5	
Valuation Mode	Total module examination	
	Written exam 90 min	
Module Head	Prof. Dr. Thomas Stirner	
Recommended	N-02 Foundations of Physics	
Prerequisites	N-05 Chemistry and Materials	
	N-10 Advanced Physics	
Learning Objectives	 Fundamental understanding for bionics 	
	 Interdisciplinary connection of biology and 	
	technology	
	 Learning problem solving strategies bionics 	
	 Ability to apply bionics when solving technical 	
	challenges	

Course	N7111		
Name	Bionics		
Instructors	DiplBiol. (Univ.) Kristina Wanieck		
Assignment to the Module	N-30 Bionics		
Assignment to the	Applied Physics (Bachelor)		
Curriculum			
Study Focus	Sensory Systems		
Semester	7		
Credit Hours	4		
Credit Points (ECTS)	5		
Workload	150h: lectures 60h, homework 45h, exam preparation 45h		
Examination Performance	See module		
Final Grade Formation	See module		
Language	German		
Teaching Methods	Lectures, seminar-like lessons, exercises		
Media Forms	Board, overhead projector, projector		
Literature	Nachtigall W., <i>Bionik: Grundlagen und Beispiele für</i> <i>Ingenieure und Naturwissenschaftler</i> , 2. Auflage, Springer-Verlag, Berlin, 2002 Lindemann U., <i>Methodische Entwicklung technischer</i> <i>Produkte</i> , 3. Auflage, Springer-Verlag, Heidelberg, 2009		
Module Head	Prof. Dr. Thomas Stirner		
Content	Students gain knowledge about the basic principles of bionics. Students are able to select suitable aspects of biological systems for special technical applications. Content: • Basics of bionics		
	 Basics of biolitics History and definition of bionics 		
	 Bionics as science 		
	 Application areas of bionics 		
	 Process of bionic working 		
	 Bionics as methodology for idea generation 		
	 Bionics as innovation strategy 		
	 Bionics in innovations management 		
	 Sensory systems in biology and technology 		
	o Literature seminar		
	 Laboratory tours and exercises 		
	 Practical exercises 		
	 Innovation Day 		

Module N-31 Remote Sensing

Module	N-31	
Module Name	Remote Sensing	
Module Components	N7112 Remote Sensing	
(courses)		
Assignment to the	Applied Physics (Bachelor)	
Curriculum:		
Study Focus	Sensory Systems	
Credit Points (ECTS)	5	
Valuation Mode	Total module examination	
	Written exam 90 min	
Module Head	Prof. Dr. Florian Flossmann	
Recommended	N-10 Advanced Physics	
Prerequisites	N-25 Industrial Sensor Systems	
	N-26 Advanced Sensor Systems	
Learning Objectives	 Understanding and application of remote 	
	sensing systems	
	 Ability to assess measurement problems in 	
	remote sensing	
	 Ability to select in an application-oriented way 	
	measurement principles for special tasks in	
	remote sensing and to assess implementation	
	possibilities	
	 Analysis of practice-oriented examples of 	
	remote sensing and understanding of	
	systematic approaches to solution by means of	
	modern production tasks	

Course	N7112
Name	Remote Sensing
Instructors	Prof. Dr. Florian Flossmann
Assignment to the Module	N-31 Remote Sensing
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	Sensory Systems
Semester	7
Credit Hours	4
Credit Points (ECTS)	5
Workload	150h: lectures 60h, homework 45h, exam preparation
	45h
Examination Performance	See module
Final Grade Formation	See module
Language	German

Teaching Methods	Lectures, seminar-like lessons, exercises	
Media Forms	Board, overhead projector, projector	
Literature	See script for literature list	
Module Head	Prof. Dr. Florian Flossmann	
Content	Students gain knowledge about the basic principles of non-contact measuring methods. Students are able to select suitable non-contact measuring methods for special technical applications.	
	 Content: Optical properties of the atmosphere Transparence and refraction index of the atmosphere LIDAR principles Space based technologies Remote sensing for measurement of environmental influences Future of optical remote sensing 	

Module N-32 Business Practice

Module	N-32	
Module Name	Business Practice	
Module Components	N6101 Internship	
(courses)	N6102 Practical Seminar	
	N6103 Practice Complementary In-Depth Subject	
Assignment to the	Applied Physics (Bachelor)	
Curriculum:		
Study Focus	General	
Credit Points (ECTS)	30	
Valuation Mode	All module components need to be evaluated with	
	"passed"	
Module Head	Prof. Peter Schmieder	
Prerequisites	The precondition for the admission to the practical	
	semester is that at least 90 ECTS credits have been	
	achieved.	
Learning Objectives	 The general objective is to prematurely give the 	
	students the opportunity to apply their gained	
	knowledge in practice and at the same time to	
	get to know the processes in a company.	
	 Practical application of the knowledge gained in 	
	other modules.	
	 Application, rooting and extension of the 	
	already gained knowledge to the problems in	

	engineering practice.
0	Gaining key qualifications like for example
	analytical competencies, problem solving
	methodology, statistical experiment planning,
	management skills, etc.
0	Getting familiar with the improvement of
	cooperation and communication skills and the
	meaning of team work.
0	Target group-appropriate presentation of the
	tasks during the internship and the results
	achieved during work.

Course	N6101	
Name	Internship	
Instructors	Prof. Peter Schmieder	
Assignment to the Module	N-32 Business Practice	
Assignment to the	Applied Physics (Bachelor)	
Curriculum		
Study Focus	General	
Semester	22	
Credit Hours	Internship with a duration of 18 weeks	
Credit Points (ECTS)	Internship: 22 ECTS	
Workload	Internship: 660h incl. documentation	
Examination Performance	Internship:	
	 Report about the tasks done during the 	
	internship (written activity report 18 pages	
	DIN A4 in digital form)	
	 Certificate of the firm in form of an 	
	employment reference letter	
Final Grade Formation	Evaluated as "passed" when taken part successfully	
Language	German, in accordance with the supervisor, work can	
	be done in English language	
Module Head	Prof. Peter Schmieder	
Content	Practical work in an industrial company or other	
	appropriate training companies for the duration of 18	
	weeks. Students get involved in current projects of	
	the company.	
	Individual topics from the areas:	
	 Development, projecting, construction 	
	 Production (manufacture and assembling) 	
	 Production preparation and control 	
	 Assembling, operation and maintenance of 	
	machines and facilities	
	 Examination, acceptance, manufacturing 	

 Information technology in industrial processing of products

Course	N6102	
Name	Practical Seminar	
Instructors	Prof. Peter Schmieder	
Assignment to the Module	N-32 Business Practice	
Assignment to the	Applied Physics (Bachelor)	
Curriculum		
Study Focus	General	
Semester	6	
Credit Hours	2	
Credit Points (ECTS)	3	
Workload	Total : 90 h; attendance seminar 30 h, preparation: 60 h	
Examination Performance	Presentation (duration 20 min)	
	The successful participation on the practical seminar is a precondition for passing the module "Business Practice and therefore for the recognition of the ECTS credits from the internship	
Final Grade Formation	Evaluated as "passed" when taken part successfully	
Language	German, in accordance with the supervisor, work can be done in English language	
Teaching Methods	Presentation	
Media Forms	 Writing on board 	
	o Projectors	
	o Presentations	
Literature	Diverse, as well as internet research	
Module Head	Prof. Peter Schmieder	
Prior Knowledge	none	
Content	Creation of a presentation and report about the activities and tasks of the students that were done during the internship. In the practical seminar, all students receive information about new developments, procedures and proficiencies conducted in various companies.	
	By means of the presentations, students are to familiarize each other with information about the respective firms. Students gain insights into the various firms of the region and their core competencies as well as information about the manufacturing process of products in the physical- technical environment.	

Course	N6103	
Name	Practice Complementary In-Depth Subject	
Instructors	Prof. Peter Schmieder	
Assignment to the Module	N-32 Business Practice	
Assignment to the	Applied Physics (Bachelor)	
Curriculum		
Study Focus	General	
Semester	6	
Credit Hours	4	
Credit Points (ECTS)	5	
Workload	150h: 60h seminar, 60h simulation, 30h excursion	
Examination Performance	Written exam ("successfully passed")	
Final Grade Formation	See module	
Language	German	
Teaching Methods	Seminar-like lessons, self-reliant working,	
	demonstrations with simulation software business	
	game	
Media Forms	Writing on board, projectors, simulation software	
Literature	To be announced during the course	
Module Head	Prof. Peter Schmieder	
Content	Students gain competencies with direct connection to the practical activities of a physics engineer, e.g. company lectures, excursions, software applications, social skills seminars, legal seminars, etc. Further topics contain for example:	
	 Statistical experiment planning Statistical experiment evaluation SixSigma Applications and examples for experiment planning Basics of business administration Business game simulation Application of the simulation software to a business example 	

Module N-33 Bachelor

Module	N-33
Module Name	Bachelor
Module Components	N7104 Bachelor Thesis
(courses)	N7105 Oral Examination

Assignment to the	Physical Engineering (Bachelor)
Curriculum:	
Study Focus	General
Credit Points (ECTS)	15
Valuation Mode	
valuation mode	The total grade of the module is computed by the
	partial grades weighted by the ECTS credits of the
	module components.
Module Head	Prof. Dr. Thomas Stirner
Admission Prerequisites	You can register your Bachelor thesis if you have
	achieved at least 130 ECTS credits.
	Recommended prerequisites:
	N-08 Presentation Techniques
	N-21 resp. N-27 Project Work
Learning Objectives	 Insight into the topics, methodology and mode
	of thoughts of general scientific specific areas
	 Gaining key qualifications like for example
	ability to work in a team, problem solving
	methods, project planning, communication skills
	etc.
	 Ability to assess interdisciplinary topics and
	applications
	 Gaining intercultural, social competencies
	 Ability to present and defend a scientific work

Course	N7104
Name	Bachelor Thesis
Instructors	Supervising Professor
Assignment to the Module	N-33 Bachelor
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	7
Credit Hours	Supervision effort ca. 0,2 credit hours
Credit Points (ECTS)	12
Workload	360h
Examination Performance	Written final paper, no oral examination
Final Grade Formation	See module
Language	German, in accordance with the supervisor, work can
	be done in English language
Teaching Methods	Self-reliant working
Media Forms	
Literature	Depending on the area of expertise
Module Head	Prof. Dr. Thomas Stirner
Content	Theoretical and/or experimental work for solving practice-oriented problems.

Course	N7105
Name	Oral Examination
Instructors	
Assignment to the Module	N-33 Bachelor
Assignment to the	Applied Physics (Bachelor)
Curriculum	
Study Focus	General
Semester	7
Credit Hours	
Credit Points (ECTS)	3
Workload	90h
Examination Performance	Oral examination Presentation 20 min or
	written exam poster with questions each
Final Grade Formation	Presentation about the final paper (100%) or poster
	(100%)
Language	German, in accordance with the supervisor,
	presentation and/or poster can be done in English
	language
Teaching Methods	Seminar
Media Forms	Lectures, presentations with projectors, poster
Literature	Eco U., Wie man eine wissenschaftliche
	Abschlussarbeit schreibt, 13. Auflage, UTB,
	Heidelberg, 2010
	Von Werder L., Grundkurs des
	wissenschaftlichen Schreibens, Schibri-Verlag,
	Milow (Uckerland), 1995
Module Head	Prof. Dr. Thomas Stirner
Content	 Preparation for the writing of the written
	Bachelor thesis
	 Structure and written form of a scientific work
	 Presentation, discussion and evaluation of the
	work progresses
	 Final presentation or creation of a poster