Modulhandbuch
Bachelor Bauingenieurwesen
Fakultät Bauingenieurwesen und Umwelttechnik
Prüfungsordnung 01.10.2022
Stand: Montag 02.05.2022 08:09
B-01 Chemie ... 4
B-02 Analytische Grundlagen ... 7
B-03 Darstellung .. 10
B-04 Baubetrieb I .. 14
B-05 Mathematik I ... 16
B-06 Werkstoffe I ... 19
B-07 Konstruieren und Planen .. 22
B-08 Bauphysik I .. 26
B-09 Baustatik I ... 29
B-10 Informatik I ... 32
B-11 Mathematik II .. 35
B-12 Baustatik II .. 38
B-13 Laborpraktika .. 41
B-14 Verkehrswesen .. 45
B-15 Geotechnik I .. 47
B-16 Vermessung ... 50
B-17 Baustatik III ... 53
B-18 Massivbau I ... 56
B-19 Holzbau I ... 59
B-20 Recht ..------------ 62
B-21 Praktikum ... 65
B-22 Metallbau I ... 69
B-23 Werkstoffe II und Massivbau II 72
B-24 Wasserwirtschaft I .. 77
B-25 Wasserwirtschaft II ... 81
B-26 Verkehrswegebau I ... 85
• B-27 Vertiefung Bauingenieurwesen - Projektstudium nach Wahl ... 88
• B-28 Fachwissenschaftliches Wahlpflichtfach BIW 95
• B-29 Vorbeugender baulicher Brandschutz 98
• B-30 Baubetrieb II .. 101
• B-31 Bachelorarbeit.. 104
B-01 CHEMIE

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Karl-Heinz Dreihäupl</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B1101 Chemie</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Karl-Heinz Dreihäupl</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>schr. P. 90 Min.</td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>90 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>5/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Die Studierenden sollen die Grundlagen aus allgemeiner, anorganischer, organischer und physikalischer Chemie kennenlernen. Sie sollen mit Abschluss des Kurses in der Lage sein, chemische Hintergründe in der Bauchemie und Umwelt zu verstehen.

Kenntnisse:

Die Studierenden verstehen wesentliche Grundlagen der allgemeinen, anorganischen, organischen und physikalischen Chemie. Der Atombau und die verschiedenen Bindungsmodelle können skizziert werden. Sie identifizieren verschiedene Teilgebiete der Chemie.

- Atomaufbau
- Bindungsverhältnisse
- Zustand der Stoffe, Aggregatzustände, Phasenumwandlungen, Modifikationen
- Chemische Reaktionen
- Grundlagen chemische Thermodynamik und Reaktionskinetik
Organische Chemie, Kohlenwasserstoffe, Funktionelle Gruppen (Alkohole, Ether, Aldehyde, Ketone, Carbonsäuren, Ester, Öle und Fette), Kunststoffe und deren Verwendung

Fertigkeiten:

Die erworbenen Kenntnisse können zur Lösung chemischer Probleme in der Umwelt angewendet werden. Berechnungen vertiefen das Wissen.

- Berechnen chemischer Reaktionen
- Anwenden der Regeln der Thermodynamik, Lösen chemischer Gleichungen und Entwickeln verschiedener Produkte wie Ester, Öle, Fette, Kunststoffe etc.
- Unterscheiden von Problematiken aus anorganischer oder organischer Chemie
- Anwenden von Atommodellen der Chemie, Aufstellen von Reaktionsgleichungen und Darstellen von Ergebnissen
- Einsetzen des Periodensystems
- Erkennen und Bezeichnen von Molekülen und Stoffgruppen

Kompetenzen:

Chemische Fragestellungen in vielfältigen Prozessen werden erkannt, interdisziplinär eingeordnet und beantwortet.

- Chemische und physikalische Eigenschaften verstehen
- Einflüsse der Umwelt auf Stoffe nachvollziehen und ihre Veränderungen bewerten

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlagen- und Orientierungsprüfung

Grundlage für das Chemiepraktikum

Grundlage für weitere Fächer im Bachelorstudium (wie Werkstoffe, Wasserwirtschaft) und im Masterstudium (Recycling und Entsorgung).

Zugangs- bzw. empfohlene Voraussetzungen

Grundkenntnisse allgemeiner Chemie

Inhalt

Grundlagen aus den Teilbereichen der Chemie: Allgemeine, anorganische, organische, physikalische Chemie
Inhalt:

- Atombau, Elemente, Periodensystem d. Elemente
- Chemische Bindung, unpolar, polar, ionisch, metallisch, Van-der-Waals, H-Brücken
- Zustand der Stoffe, Aggregatzustände, Phasenumwandlungen, Modifikationen
- Chemische Reaktionen: Chemie des Wassers, Löslichkeitsprodukt, Säure-Base-Theorie, Redoxreaktionen, Redoxvermögen d. Metalle
- Chemische Thermodynamik, Reaktionsenthalpie, Gibbs’sche Energie
- Chemische Reaktionskinetik, Stoßtheorie, Katalyse
- Organische Chemie, Kohlenwasserstoffe, Funktionelle Gruppen (Alkohole, Ether, Aldehyde, Ketone, Carbonsäuren, Ester, Öle und Fette, Kunststoffe und deren Verwendung)
- Einfache Reaktionen der organischen Chemie

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Berechnungsbespielen und Übungen

Empfohlene Literaturliste

Charles E. Mortimer, U. Müller, Chemie, Das Basiswissen der Chemie, Thieme, 2014

Allgemein: Bücher, die das Basiswissen der Chemie behandeln
B-02 ANALYTISCHE GRUNDLAGEN

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Parviz Sadegh-Azar</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B1102 Grundlagen der Technischen Mechanik, B1103 Grundlagen der Hydromechanik</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Rudolf Metzka, Prof. Dr. Parviz Sadegh-Azar</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>7</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 90 Stunden, Selbststudium: 120 Stunden, Gesamt: 210 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>schr. P. 120 Min.</td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>120 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>7/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Kenntnisse:

- Technische Mechanik:
 - Kräfte, Momente und deren Zusammensetzung bzw. Zerlegung in der Ebene und im Raum
 - Gleichgewicht an Baukörpern in der Ebene und im Raum
 - statische Modellbildung
 - Auflagerreaktionen und Schnittgrößen statisch bestimmter ebener und räumlicher Systeme einschließlich Fachwerke
 - Haftung und Reibung

- Hydromechanik:
 - Physikalische Eigenschaften des Mediums
o hydrostatische und hydrodynamische Grundlagen

o Rohrhydraulik

Fertigkeiten:

o Technische Mechanik:
 o statisch bestimmte Systeme (einschließlich Gelenksysteme von kinematischen und statisch unbestimmten Systemen unterscheiden
 o Auflagerreaktionen und Schnittgrößen statisch bestimmter ebener und räumlicher Systeme berechnen
 o Zustandslinien für Schnittgrößen darstellen

o Hydromechanik:
 o Ermitteln der hydrostatischen Belastung auf beliebige Flächen
 o Nachweis der Schwimmstabilität und Auftriebsermittlung
 o Anwenden der Energiegleichungen
 o Anwenden der Rohrhydraulik zur Bemessung von Rohrleitungen

Kompetenzen:

o Technische Mechanik:
 o Ermittlung von Kräften, Momenten und selbstständige Beurteilung von Gleichgewichtssituationen einfacher statisch bestimmter Systeme (einschließlich Gelenkkonstruktionen)

o Hydromechanik:
 o Verstehen von physikalischen Zusammenhängen
 o Selbstständige Bearbeitung hydraulischer Fragestellungen der Rohrhydraulik

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlagen- und Orientierungsprüfung

Grundlage für diverse Lehrveranstaltungen im Bachelorstudium (wie Baustatik, Holzbau, Wasserwirtschaft I und II, Massivbau) und Masterstudium (wie Massivbau, Finite Elemente)

Zugangs- bzw. empfohlene Voraussetzungen
Inhalt

Grundlagen der Technischen Mechanik:

Grundlagen der Statik
 o Grundbegriffe
 o Kräfte mit gemeinsamem Angriffspunkt
 o Allgemeine Kraftsysteme und Gleichgewicht des starren Körpers
 o Schwerpunkt
 o Lagerreaktionen
 o Fachwerke
 o Arbeit
 o Haftung und Reibung

Grundlagen der Hydromechanik:

 o Physikalische Eigenschaften des Wassers
 o Hydrostatik
 o Hydrodynamik idealer Flüssigkeiten (Rohre, Gerinne)
 o Impulssatz
 o Hydrodynamik realer Flüssigkeiten (Rohrströmung)

Lehr- und Lernmethoden

Seminaristischer Unterricht

Empfohlene Literaturliste

Gross, Hauger, Schnell: Technische Mechanik, Teil 1: Statik, Springer-Verlag 2019

Gross, Ehlers, Wriggers, Schröder, Müller: Formeln und Aufgaben zur Technischen Mechanik 1 - Statik, Springer-Verlag 2021

Zanke, Ulrich: Hydraulik für den Wasserbau, Springer-Verlag 2013

Heinemann, Feldhaus: Hydraulik für Bauingenieure, Springer-Verlag 2003
B-03 Darstellung

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Konrad Deffner</td>
</tr>
</tbody>
</table>
| Kursnummer und Kursname | B1104 Konstruktives Zeichnen und CAD I
 | B1105 Darstellende Geometrie und Freihandzeichnen |
| Lehrende | Prof. Konrad Deffner
 | Prof. Dr. Kai Haase
 | Stefan Kufner |
| Semester | 1 |
| Dauer des Moduls | 1 Semester |
| Häufigkeit des Moduls | jährlich |
| Art der Lehrveranstaltungen | Pflichtfach |
| Niveau | Bachelor |
| SWS | 4 |
| ECTS | 5 |
| Workload | Präsenzzeit: 60 Stunden
 | Selbststudium: 90 Stunden
 | Gesamt: 150 Stunden |
| Prüfungsarten | PStA |
| Gewichtung der Note | 5/210 |
| Unterrichts-/Lehrlsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse:

- wesentliche Grundlagen und Methoden des freien und gebundenen Zeichnens:
 - Grundlagen der Projektion räumlicher Zusammenhänge
 - Parallele Orthogonalprojektion
 - Zwei- Drei-Tafelprojektion
 - Kotierte Projektion
 - Allgemeine Orthogonalprojektion und Grundzüge der Axonometrie
 - Zentralprojektion und Grundzüge der Perspektive
 - Freihändiges Zeichnen

- wesentliche Grundlagen und Methoden des konstruktives Zeichnen und CAD:
Grundlagen des Bauzeichnens: Normung, Zeichengeräte, Zeichnungsträger, Maßstäbe, Linientypen, Strichstärken, Beschriftung, Bemaßung

Bauzeichnungs- und Darstellungarten: Übersichtsplan/Lageplan, Vorentwurfs-, Entwurfs-, Ausführungsplan; Grundrisse, Schnitte, Ansichten, Details

CAD: digitales Zeichnen, Tools, Datenstrukturen, Datenverwaltung

Fertigkeiten:
- einfache Aufgabenstellungen des freien und gebundenen Zeichnens:
 - Darstellen von Punkten, Strecken und Flächen im Raum
 - Ermitteln wahrer Größen von Strecken und Flächen
 - Konstruieren von räumlichen Durchdringungen und Abwicklungen
 - freihändige, zeichnerische Bauaufnahme einfacher Gebäudeteile
 - freihändiges Skizzieren planerischer Ideen und Konzepte
- einfache konstruktive Bauzeichnungen
 - Darstellen einfacher Grundrisse, Schnitte und Ansichten auch mit CAD
 - zeichnerisches Entwickeln von Standarddetails auch mit CAD

Kompetenzen:
- Beherrschung wesentlicher Zusammenhänge des freien und gebundenen Zeichnens
 - Befähigung zum räumlichen Denken
 - Beurteilung komplexer, räumlicher Zusammenhänge
 - selbständige Herleitung und Steuerung räumlich komplexer Zusammenhänge.
 - freihändig, zeichnerische Analyse bestehender baulicher Situationen
 - kreativer Einsatz der freihändigen Skizze als Sprache für fachliche und interdisziplinäre Kommunikation
- Beherrschung wesentlicher Methoden des konstruktiven Zeichnens und des CAD
 - selbständige Darstellung von Grundrissen, Schnitten und Ansichten
 - selbständiges zeichnerisches Entwickeln von Konstruktionszeichnungen
 - Befähigung zur eigenständigen Anwendung von CAD für konstruktive Zeichnungen aller Art und strukturiertes Datenmanagement.
Verwendbarkeit in diesem und in anderen Studiengängen

Allgemeines Grundlagenmodul

Zugangs- bzw. empfohlene Voraussetzungen

keine

In den Übungen zu CAD besteht Anwesenheitspflicht!

Inhalt

Konstruktives Zeichnen und CAD I:

o Grundlagen des Bauzeichnens: Normung, Zeichengeräte, Zeichnungsträger, Maßstäbe, Linientypen, Strichstärken, Beschriftung, Bemaßung

o Bauzeichnungs- und Darstellungsarten: Übersichtsplan/Lageplan, Vorentwurfs-, Entwurfs-, Ausführungsplan; Grundrisse, Schnitte, Ansichten, Details

o Zeichnungen aus ausgewählten Baudisziplinen: Mauerwerksbau, Holzbau, Stahlbetonbau, Stahlbau, u.a.

o Anwendung von CAD am Beispiel von Nemetschek ALLPLAN: Grundlagen der Bedienung, Zeichnen von Grundrissen, Schnitten und Details in 2D, maßstäbliches Beschriften, Vermaßen und Plotten

Prüfung: PStA (b/nb) - Prüfungsstudienarbeit ohne Note, nur bestanden oder nicht bestanden

Darstellende Geometrie und Freihandzeichnen:

o Grundlagen der Projektion räumlicher Zusammenhänge

o Parallele Orthogonalprojektion

o Zwei- Drei-Tafelprojektion

o Kotierte Projektion

o Allgemeine Orthogonalprojektion

o Grundzüge der Axonometrie

o Zentralprojektion

o Grundzüge der Perspektive

o Freihändiges Zeichnen
o Zeichnerische Aufnahme

o Zeichnerische Analyse

Prüfung: PStA

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen

Besonderes

Konstruktives Zeichnen und CAD: Dual Studierende können die Prüfungsstudienarbeit in / mit ihrem Unternehmen zu einem Thema aus der Unternehmenspraxis verfassen.

Darstellende Geometrie und Freihandzeichnen: Dual Studierende können die Prüfungsstudienarbeit in / mit ihrem Unternehmen zu einem Thema aus der Unternehmenspraxis verfassen.

Empfohlene Literaturliste

Wienands, Wossnig, TU München: Grundlagen der Darstellung, München

Schröder: Technisches Zeichnen für Ingenieure, Springer Vieweg

B-04 BAUBETRIEB I

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Gerd Maurer</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B1106 Baubetrieb I</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Gerd Maurer</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
</tbody>
</table>
| Workload | Präsenzzeit: 60 Stunden
Selbststudium: 90 Stunden
Gesamt: 150 Stunden |
| Prüfungsarten | schr. P. 90 Min. |
| Dauer der Modulprüfung | 90 Min. |
| Gewichtung der Note | 5/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Vermittlung von Kenntnissen und Fähigkeiten in der Baubetriebslehre

Kenntnisse:
- Beteiligte beim Bauen,
- Bauablaufplanung und Netzplantechnik,
- Baugeräte und Schalungstechnik,
- Grundlagen der Baupreisermittlung: Mittellohnberechnung, Kalkulation über die Angebotssumme

Fertigkeiten:
- Erstellen von Netzplänen mit Abhängigkeiten
- Auswahl von Schalsystemen
- Aufstellung von Mittellohnberechnungen und einfachen Baupreis-Kalkulationen

Kompetenzen:
richtiger Umgang mit allen wichtigen Beteiligten beim Bauen,
Erstellen von Bauablaufplänen und Netzplänen,
Auswahl geeigneter Schalungssysteme, Betondruckberechnung
Kennis der Grundlagen der Baupreisermittlung,

Verwendbarkeit in diesem und in anderen Studiengängen

Baubetrieb I enthält eigenständig verwertbare Kapitel, die im Modul Baubetrieb II um weitere Kapitel ergänzt werden.

Zugangs- bzw. empfohlene Voraussetzungen
keine

Inhalt
- Bauablauf und Beteiligte beim Bauen
- Netzplantechnik
- IT-Workshop Terminplanungssoftware
- Baugeräte und Schalungstechnik
- Grundlagen der Baupreisermittlung und Durchführung von Baupreiskalkulationen

Lehr- und Lernmethoden
Seminaristischer Unterricht, Übungen

Empfohlene Literaturliste

Vorlesungsmanuskript
"Grundlagen der Baubetriebslehre 1", Baubetriebswirtschaft, 2. Auflage, Berner, Kochendörfer, Schach
"Kalkulation von Baupreisen", Drees, Krauß, Berthold, 13. Auflage, Beuth Verlag, 2019
"VOB / BGB / HOAI", Beck-Texte im dtv
B-05 MATHEMATIK I

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Rudi Marek</td>
</tr>
</tbody>
</table>
| Kursnummer und Kursname | B1207 Mathematik I.1
B2201 Mathematik I.2 |
| Lehrende | Prof. Dr. Rudi Marek |
| Semester | 1, 2 |
| Dauer des Moduls | 2 Semester |
| Häufigkeit des Moduls | jährlich |
| Art der Lehrveranstaltungen | Pflichtfach |
| Niveau | Bachelor |
| SWS | 6 |
| ECTS | 7 |
| Workload | Präsenzzeit: 90 Stunden
Selbststudium: 110 Stunden
Virtueller Anteil: 10 Stunden
Gesamt: 210 Stunden |
| Prüfungsarten | schr. P. 90 Min. |
| Dauer der Modulprüfung | 90 Min. |
| Gewichtung der Note | 7/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse:

Fertigkeiten:
Die Studierenden sind befähigt, aus ihrem späteren Tätigkeitsfeld als Bauingenieure/innen erwachsene fachspezifische mathematische Fragestellungen als solche sicher zu erkennen und sie aufgrund ihres Verständnisses mathematisch korrekt zu formulieren.

Kompetenzen:
Die Studierenden können auf Basis ihrer Kenntnisse und der sicheren Anwendung mathematischer Methoden selbständige Analysen durchführen, fachspezifische Fragestellungen im Bereich des Bauingenieurwesens zielgerichtet lösen und die Ergebnisse eigenverantwortlich interpretieren und bewerten.

Verwendbarkeit in diesem Studiengang
B-02 Analytische Grundlagen
B-09 Baustatik I
B-11 Mathematik II
B-12 Baustatik II
B-16 Vermessung
B-17 Baustatik III

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlagen- und Orientierungsprüfung

Verschiedene anwendungsbezogene Module im Bachelor BIW, Informatik I, Mathematik II, Mathematik III (Master)

Zugangs- bzw. empfohlene Voraussetzungen

Mathematische Grundkenntnisse

Inhalt

- Algebra (Elementare Rechenregeln, Gleichungen und Ungleichungen)
- Geometrie und Trigonometrie
- Analytische Geometrie (Vektoren, Geraden, Ebenen, Kugeln und Kreise)
- Lineare Algebra I (Elementare Begriffe zu Matrizen und Determinanten, Gauß'scher Algorithmus für lineare Gleichungssysteme)
- Funktionen und Kurven I (Allgemeine Funktionseigenschaften, Koordinatentransformation, Eigenschaften und Besonderheiten elementarer Funktionen)
- Differentialrechnung einer Veränderlichen
- Integralrechnung einer Veränderlichen
- Funktionen mehrerer Veränderlicher
- Differentialgleichungen I (Grundbegriffe, gewöhnliche lineare Differentialgleichungen n-ter Ordnung, Schwingungen)

Lehr- und Lernmethoden
Seminaristischer Unterricht, Übungen, eLearning, Pingo-Quiz, Übungsvideos

Empfohlene Literaturliste

Marek R.: Ausführliches Skript mit zahlreichen illustrierenden Beispielen, 2022

Bartsch H.-J.: Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler, 24., neu überarb. Aufl., Hanser Verlag, 2018

B-06 WERKSTOFFE I

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Karl-Heinz Dreihäupl</td>
</tr>
</tbody>
</table>
| Kursnummer und Kursname | B1208 Werkstoffe I.1
 B2202 Werkstoffe I.2 |
| Semester | 1, 2 |
| Dauer des Moduls | 2 Semester |
| Häufigkeit des Moduls | jährlich |
| Art der Lehrveranstaltungen | Pflichtfach |
| Niveau | Bachelor |
| SWS | 7 |
| ECTS | 7 |
| Workload | Präsenzzeit: 105 Stunden
 Selbststudium: 105 Stunden
 Gesamt: 210 Stunden |
| Prüfungsarten | schr. P. 120 Min. |
| Dauer der Modulprüfung | 120 Min. |
| Gewichtung der Note | 7/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse:

- Grundlagen der Werkstoffphysik und Werkstoffchemie, Metallurgie
- Aufbau der Werkstoffe (Mikrobereich, Makro-struktur)
- Erkennen und Spezifizieren ableitbarer mechanischer, physikalischer und chemischer/mineralogischer Eigenschaften von Werkstoffen
- Ermittlung der zur theoretischen Beschreibung der Werkstoffeigenschaften erforderlichen Kenngrößen (Prüfung, Untersuchung, Qualitäts-feststellung)
- Anwendung von Materialprüfungen im Bauwesen, Kenntnisse von chemischen Laboruntersuchungen der Baustoffe
- Kenntnisse der Eigenschaften und Anwendungskriterien/grenzen für mineralische Werkstoffe und Metall
- Bewertung der Eigenschaften und Herstellung der Technische Werkstoffe: anorganische Bindemittel, Beton, Nichteisenmetalle, Stahl, Holz

Fertigkeiten:

Kompetenzen:

- Durchführung und Bewertung der Ergebnisse von Materialprüfungen für Bindemittel, Beton, Stahl und Holz und Bewertung von bauchemischen Laboruntersuchungsergebnissen
- Entwurf von Betonmischungen
- Auswahl von für den Anwendungszweck geeigneten Werkstoffen und Bewertung der Anwendungsgrenzen, der Risiken beim Einsatz neuer Werkstoffe
- Mithilfe bei der Entwicklung neuer Werkstoffe im Bauwesen
- Kenntnis der Baustoffnormen und der zugrundeliegenden Prüfungen
- Mithilfe bei Zulassungsverfahren für Baustoffe und Bauteile

Verwendbarkeit in diesem und in anderen Studiengängen

Allgemeines Grundlagenmodul - vor allem Werkstoffe II, Massivbau, Konstruktiver Ingenieurbau

Zugangs- bzw. empfohlene Voraussetzungen

Gute Kenntnisse der Chemie und Physik der Oberstufe

Inhalt

- Grundlagen der Werkstoffphysik und Werkstoffchemie, Metallurgie
- Entstehung von amorphen und kristallinen Stoffen: Erstarren aus der Schmelze, Fällung
- Kolloide Stoffe und Lösungen
- Kristallaufbau, Anordnung und Bestandteile (Komplexionen, Ionen, Moleküle)
- Werkstoffphysik: Transportmechanismen (Kapillerströmung, Diffusion), Mechanische Eigenschaften (Bruchverhalten, Bruchmechanik, viskos Verhalten)
- chemisch-mineralogische Labor - Untersuchungsverfahren: wie Mikroskopie,
o Grundlagen der Metallurgie

o Zustandsschaubilder, Phasendiagramme

o Gefüge von Werkstoffen, Schliffbilder von Gesteinen, Beton, Stahl

o Beeinflussung der Gefüge von Stahl durch Legieren, Wärmebehandlung, Kaltumformung

o mechanische, physikalische und mineralogische Eigenschaften und Stoffkennwerte von mineralischen Bindemitteln, Beton, Nichteisenmetallen, Stahl, Holz

o Grundlagen der Materialprüfung im Bauwesen und von chemischen Laboruntersuchungen der Baustoffe

o Laborübungen: anorganische Bindemittel, Beton, Stahl, Verbindungsmittel, Schweissverfahren, Holz und Verbindungsmittel

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen

Laborpraktika in Materialprüfung und Bauchemie

Empfohlene Literaturliste

Skripten: Grundlagen der Werkstoffphysik, Mineralische Bindemittel, Beton I, Metalle und Stahl, Holz

Unterlagen zum Praktikum Baustoffkunde I

Vorlesungsbegleitende Ergänzungsunterlagen

Wesche, R; Baustoffe für tragende Teile

Roos, Maile; Werkstoffe für Ingenieure

Reinhardt; Ingenieurbaustoffe

Ashby, Jones; Werkstoffe

Bargel, Schulze; Werkstoffkunde

Bergmann; Werkstofftechnik 1

Hornbogen, Eggeler, Werkstoffe

Ruge, Technologie der Werkstoffe
B-07 KONSTRUIEREN UND PLANEN

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Konrad Deffner</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B1209 Baukonstruktion 1</td>
</tr>
<tr>
<td></td>
<td>B2203 Baukonstruktion 2</td>
</tr>
<tr>
<td></td>
<td>B2204 Bauleitplanung</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Konrad Deffner</td>
</tr>
<tr>
<td>Semester</td>
<td>1, 2</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>8</td>
</tr>
<tr>
<td>ECTS</td>
<td>8</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 120 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 120 Stunden</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 240 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>PStA</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>8/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Kenntnisse:

- wesentliche Grundlagen und Methoden der Hochbaukonstruktion
 - Wissen über wesentliche Baustoffe und ihre Möglichkeiten und Grenzen
 - Wissen über strukturelle Merkmale des Massivbaus und des Skelettbau
 - Wissen über grundlegende Konstruktionsweisen im Holzbau, Mauerwerksbau und Stahlbetonbau
 - Unterscheiden von Primärkonstruktion und Sekundärkonstruktion
 - Erkennen äußerer und innerer Einflüsse und deren Auswirkungen auf die Konstruktion
- wesentliche Grundlagen und Methoden der Bauleitplanung
 - Wissen über Begrifflichkeiten in der Bauleitplanung
 - Überblick über die Geschichte der Stadtentwicklung
Überblick über die wesentliche Parameter der Stadtplanung: Wohnen, Gewerbe, Erschließung, Grünräume

Wissen über städtebauliche Parameter im Wohnungsbau

Bauordnung der Länder, Abstandsflächen

Baugesetzbuch, Baunutzungsverordnung, Planzeichenverordnung

Überblick über die Verfahren in der Bauleitplanung

Überblick über die Raumplanung: Regional- und Landesplanung

Fähigkeiten:

- einfache, konstruktive Teillösungen im Hochbau
 - Entwickeln und Dimensionieren einfacher Primärkonstruktionen im Holzbau, Mauerwerks- und Stahlbetonbau
 - Darstellen grundlegender Standarddetails für Gründung, Sockel, Wand, Wandöffnung, Decke, Dach
 - Anwenden von Standardkonstruktionen unter den Aspekten Tragen, Dämmen, Dichten

- Entwickeln einfacher städtebaulicher Entwürfe und Bebauungspläne
 - Entwickeln einfacher städtebaulicher Konzepte für Einfamilienhausbebauung
 - Entwickeln einfacher städtebaulicher Konzepte für Geschoßwohnungsbau
 - Entwickeln einer einfachen Anlage für den ruhenden Verkehr
 - Verständnis der planungsrechtlichen Prozesse in der Bauleitplanung
 - Verständnis und Berechnung städtebaulicher Kenndaten Grundfläche, Geschoßfläche, Geschoßflächenzahl

Kompetenzen:

- Beherrschung wesentlicher, planerischer und konstruktiver Lösungen im Hochbau
 - selbständiges, kreatives Entwickeln von Gebäudekonzepten
 - eigenständige, Weiterentwicklung eines Planungskonzepts nach den Regeln der Baukonstruktion
 - eigenverantwortliche, Durcharbeitung eines Planungskonzepts bis zur Ausführungsreife
 - aktive Begründung und Verteidigung eines Planungskonzepts im Dialog
Beherrschung wesentlicher städtebaulicher Methoden und Verfahrensschritte

- selbständiges, kreatives Erarbeiten einer städtebaulichen Problemstellung mit Implementierung mehrerer städtebaulicher Paramenter (Erschließung, Verkehr, öffentliche Grünflächen, städtebauliche Dichte).

- Selbständige Ermittlung und Bewertung städtebaulicher Kenngrößen

- eigenständige Entwicklung eines Bauleitplans aus einem städtebaulichen Konzept

Verwendbarkeit in diesem und in anderen Studiengängen

Allgemeines Grundlagenmodul für verschiedenste Fächer im Bachelorstudium

Grundlage für Baukonstruktion II und Entwurf (Master) und Bauleitplanung II und Verkehrsplanung (Master)

Zugangs- bzw. empfohlene Voraussetzungen

keine

Inhalt

Baukonstruktion:

- Konstruktive Systeme des Skelettbaus und des Massivbaus,
- Grundzüge des Holzbau,
- Grundzüge des Mauerwerksbaus,
- Grundzüge des Stahlbetonbaus,
- Gründung, Wand, Dach,
- Fügungsmethodik von primären und sekundären Konstruktionselementen

Bauleitplanung:

- Grundzüge der Stadtentwicklung
- wesentliche Elemente der städtebaulichen Planung: Wohn- und Gewerbebauflächen, Erschließungen, Grünräume
- Abstandsflächen Art. 6 BayBO
- Auszüge aus dem Baugesetzbuch
- Baunutzungsverordnung
Planzeichenverordnung

Grundzüge des Bebauungsplans

Grundzüge des Flächennutzungsplans

Grundlegende Aspekte der Landes- und Regionalplanung

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen

Besonderes

Baukonstruktion 1 und 2: Dual Studierende können die Prüfungsstudienarbeit in / mit ihrem Unternehmen zu einem Thema aus der Unternehmenspraxis verfassen.

Empfohlene Literaturliste

Baukonstruktion:

Ronner, Kölliker, Rysler: Baustruktur; 1995; Birkhäuser Verlag

Walter Belz: Zusammenhänge; 1993; Rudolf Müller Verlag; Köln

Lehrstuhl für Baukonstruktion und Entwerfen RWTH Aachen: Arbeitsblätter zur Baukonstruktion; 1999; Wissenschaftsverlag Mainz

Natterer, Herzog, Volz: Holzbauatlas zwei; 1991; Institut für internationale Architekturdokumentation, München

Bauleitplanung:

Hotzan: dtv-Atlas Stadt, dtv, München, 1997

Albers: Stadt Planung eine praxisorientierte Einführung Primus, Darmstadt, 1996

Hangarter: Grundlager der Bauleitplanung der Bebbauungsplan, Werner, Düsseldorf, 1996

Schwier: Bauleitplanung in der Praxis, Bauverlag, Wiesbaden, 1993

Prinz: Städtebau, Band 1: Städtebauliches Entwerfen, Kohlhammer, Stuttgart, 1999

Veröffentlichungen des Bayerischen Staatsministeriums des Innern zu Themen der Bauleitplanung

Baugesetzbuch BauGB: nichtamtliches Inhaltsverzeichnis - Gesetze im Internet
B-08 BAUPHYSIK I

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Rudi Marek</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B2105 Bauphysik I</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Rudi Marek</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>5</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
</tbody>
</table>
| Workload | Präsenzzeit: 75 Stunden
Selbststudium: 90 Stunden
Virtueller Anteil: 15 Stunden
Gesamt: 180 Stunden |
| Prüfungsmittel | schr. P. 90 Min. |
| Dauer der Modulprüfung| 90 Min. |
| Gewichtung der Note | 6/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse:
Die Studierenden lernen bauphysikalische Prinzipien und grundlegende physikalische Vorgänge und Mechanismen kennen und entwickeln ein vertieftes Verständnis dafür.

Fertigkeiten:
Sie werden befähigt, bauphysikalische Berechnungen auf Basis nationaler und europäischer technischer Regelwerke auszuführen, bauphysikalische Messungen zu bewerten und die zugehörigen Nachweise des Wärme-, Feuchte- und Schallschutzes fachgerecht zu erstellen. Sie sind in der Lage, Bauschäden aus bauphysikalischer Sicht zu analysieren und bauphysikalisch richtig Konstruktionen regelkonform zu planen.

Kompetenzen:
Verwendbarkeit in diesem und in anderen Studiengängen
Grundlagen- und Orientierungsprüfung
Baukonstruktion, Konstruktiver Ingenieurbau, Bauphysik II (Master)

Zugangs- bzw. empfohlene Voraussetzungen
Physikalische Grundkenntnisse

Inhalt
- Bauphysikalische Grundlagen
- Wärmeschutz und Energieeinsparung
- Feuchteschutz
- Schallschutz und Akustik

Lehr- und Lernmethoden
Seminaristischer Unterricht, Übungen, eLearning, Pingo Quiz

Empfohlene Literaturliste
Marek R.: Skript Tabellen - Gleichungen - Diagramme I-III zur Bauphysik, laufend aktualisiert

Willems W.M., Schild K., Stricker D.: Feuchteschutz, Grundlagen - Berechnungen - Details, 1. Aufl., Springer Vieweg, 2018

Albert A. (Hrsg.): Schneider - Bautabellen für Ingenieure mit Berechnungshinweisen und Beispielen, 25. Aufl., Reguvis, 2022

Gebäudeenergiegesetz und verschiedene Normen in der jeweils aktuell gültigen Fassung
B-09 BAUSTATIK I

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Kai Haase</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B2106 Baustatik I</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Kai Haase</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 60 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 90 Stunden</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 150 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>schr. P. 90 Min.</td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>90 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>5/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Kenntnisse

- Lasteinwirkungen
- Reaktionskräfte, Auflagergrößen, Gleichgewichtsbedingungen in der Ebene
- Schnittpinzipien und Schnittgrößenermittlung in der Ebene
- Träger, Gelenkträger, Dreigelenksysteme, Fachwerke
- Flächenmomente
- Normalspannungen aus Normalkraft und Biegemomenten an symmetrischen Querschnitten
- Spannungsnulldlinie
- Schubfluss bzw. Schubspannungen aus Querkräften an vollwandigen Querschnitten

Fertigkeiten:

- Tragwerksformen idealisieren
o Auflagerkräfte effektiv ermitteln
o Methoden der Schnittgrößenberechnung richtig und effektiv anwenden
o Zustandslinien für Schnittgrößen darstellen
o Extremalwerte ermitteln
o Querschnittswerte einfacher zusammengesetzter Querschnitte berechnen
o Normalspannungen aus Normalkraft und Biegemomenten berechnen und darstellen
o Spannungsnulllinie ermitteln und darstellen
o Werte und Verläufe des Schubflusses und der Schubspannung aus Querkraft an einfachen vollwandigen Querschnitten berechnen und darstellen

Kompetenz:
o Fähigkeit, verantwortungsvoll und selbstständig einfache Tragwerke und Lastabtragungen zu entwerfen und zu beurteilen sowie Schnittgrößen ebener statisch bestimmter Tragwerke zu berechnen
o selbstständige Ermittlung von Spannungsverläufen über den Querschnitt, Beurteilung der Lage der Spannungsnulllinie und Bewertung der Konsequenzen

Verwendbarkeit in diesem und in anderen Studiengängen
Grundlagen- und Orientierungsprüfung
Baustatik II, Baustatik III, Geotechnik I, Holzbau I, Massivbau I, Metallbau I

Zugangs- bzw. empfohlene Voraussetzungen
Technische Mechanik

Inhalt
o Lasteinwirkung in Form von Kräften und Momenten als Einzel- oder Streckenlasten
o Reaktionskräfte, Auflagergrößen
o Gleichgewichtsbedingungen in der Ebene
o Schnittgrößen in der Ebene
o Schnittprinzipien, Schnittgrößenermittlung
o Träger, Gelenkträger, Dreigelenksysteme, Fachwerke
o Flächenmomente 0., 1. und 2. Grades, Torsionquerschnittswerte
o Normalspannungen aus Normalkraft und Biegemomenten
o Schubfluss bzw. Schubspannungen aus Querkräften
o vollwandige, symmetrische Querschnitte
o Spannungsnulleinie

Lehr- und Lernmethoden
Seminaristischer Unterricht, Übungen

Empfohlene Literaturliste
Gross et al: Technische Mechanik Band 1 und 2, Springer-Verlag
Lohmeyer et al: Baustatik 1 und 2, Vieweg+Teubner-Verlag
Kirsch: Statik im Bauwesen 1 und 2, Beuth-Verlag
Dallmann: Baustatik 1, Hanser-Verlag
B-10 INFORMATIK I

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Peter Ullrich</td>
</tr>
</tbody>
</table>
| Kursnummer und Kursname | B2207 Informatik I.1
 | B3201 Informatik I.2 |
| Lehrende | Prof. Dr. Peter Ullrich |
| Semester | 2, 3 |
| Dauer des Moduls| 2 Semester |
| Häufigkeit des Moduls | jährlich |
| Art der Lehrveranstaltungen | Pflichtfach |
| Niveau | Bachelor |
| SWS | 4 |
| ECTS | 5 |
| Workload | Präsenzzeit: 60 Stunden
 | Selbststudium: 90 Stunden
 | Gesamt: 150 Stunden |
| Prüfungsarten | schr. P. 90 Min. |
| Dauer der Modulprüfung | 90 Min. |
| Gewichtung der Note | 5/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse:

Die Studierenden sollen fundierte Kenntnisse der wichtigsten Methoden aus der Informatik und der numerischen Mathematik, sowie Grundkenntnisse auf dem Gebiet der Digitaltechnik erwerben.

Fertigkeiten:

Die Studierenden sollen die erworbenen Kenntnisse sicher auf Fragestellungen anwenden, Algorithmen (inklusiv Programmcode), sowie logische Schaltungen eigenständig erstellen und numerische Methoden bei ingenieurtechnischen Problemstellungen vorteilhaft einsetzen können.

Kompetenz:

Die Studierenden sollen aufgrund ihres Wissens und ihrer erworbenen Fähigkeiten eine interdisziplinäre Schnittstellenkompetenz erlangen, die sie befähigt, eigenständig Methoden aus unterschiedlichen Gebieten der Informatik vorteilhaft auf technische Problemstellungen in der Praxis anzuwenden.
Verwendbarkeit in diesem und in anderen Studiengängen

Ingenieuranalyse und Modellierung (UIW), Angewandte Programmierung (UIW), Informatik II (Master)

Zugangs- bzw. empfohlene Voraussetzungen

keine

Inhalt

- Historische Entwicklung des Computers
- Formulierungen von Algorithmen, Struktogramme, Flussdiagramme
- SNAP! – eine visuelle Programmiersprache
- (Erweiteter) Euklidischer Algorithmus
- Grundbegriffe von Kryptosystemen, RSA-Verfahren
- Stellenwertsysteme
- Aussagenlogik
- Logik-Gatter und logische Schaltungen
- Schaltfunktionen, logische Terme, Entwurf logischer Schaltungen
- Simulation logischer Schaltungen mit LogiFlash
- Rechnerarchitektur
- Datenstrukturen
- XML-basierte Datenformate
- Iteration und Rekursion
- Numerische Algorithmen
- Programmierung in Open Office Basic (bzw. VBA)

Lehr- und Lernmethoden

- seminaristischer Unterricht mit Übungen und Computereinsatz

Empfohlene Literaturliste

o Gumm H.-P., Sommer M.: Grundlagen der Informatik, Band 1 u. 2, DeGruyter Studium, 2019

o Kersken S.: IT-Handbuch für Fachinformatiker, 10. Auflage, Rheinwerk Computing, 2021

o Pitonyak A.: BASIC-Makros für OpenOffice und LibreOffice. URL:http://www.pitonyak.org/OOME_3_0.pdf, (17.01.22)

B-11 MATHEMATIK II

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Rudi Marek</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B3102 Mathematik II</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Rudi Marek</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 60 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 90 Stunden</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 150 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>schr. P. 90 Min.</td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>90 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>5/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Kenntnisse:

Fertigkeiten:
Die Studierenden sind befähigt, fachspezifische Probleme aus ihrem späteren Tätigkeitsfeld als Bauingenieure/innen auf Basis der erworbenen Kenntnisse und ihres Verständnisses umfassend mathematisch zu analysieren und nach Wahl eines geeigneten Verfahrens fachgerecht und zuverlässig zu lösen, wobei auch Computer Anwendung finden.

Kompetenzen:
Die Studierenden können aufgrund ihrer vertieften Kenntnisse weiterführende Analysen fachspezifischer Fragestellungen des Bauingenieurwesens selbständig durchführen, diese durch die zielgerichtete Anwendung mathematischer Methoden sicher und erfolgreich lösen und die gewonnenen Resultate umfassend bewerten und interpretieren.
Verwendbarkeit in diesem Studiengang

B-12 Baustatik II

B-17 Baustatik III

Verwendbarkeit in diesem und in anderen Studiengängen

verschiedene anwendungsbezogene Module im Bachelor, Mathematik III (Master), Finite Elemente (Master)

Zugangs- bzw. empfohlene Voraussetzungen

Mathematik I

Inhalt

- Trigonometrische und Potenzreihen
- Differentialgleichungen II (gewöhnliche, partielle, Systeme, Reihenentwicklung)
- Lineare Algebra II (Determinanten und Matrizen, Lösbarkeit linearer Gleichungssysteme, affine und lineare Abbildungen, Kurven und Flächen 2. Ordnung)
- Funktionen und Kurven II (elementare Differentialgeometrie, Ortskurven und geometrische Örter, Integrationsmethoden, Funktionale und Extrema unter Nebenbedingungen)
- Numerische Methoden und Verfahren (Direkte und iterative Algorithmen für lineare und nichtlineare Gleichungen, Integration, Differentialgleichungen, Regression)

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen, eLearning, Pingo-Quiz, Übungsvideos

Empfohlene Literaturliste

Marek R.: Ergänzendes Skript zu ausgewählten Themen, 2022

Bartsch H.-J.: Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler, 24., neu überarb. Aufl., Hanser Verlag, 2018

B-12 BAUSTATIK II

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Kai Haase</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B3103 Baustatik II</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Kai Haase</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
</tbody>
</table>

Workload	Präsentzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden

Prüfungssarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210

| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse

- Reaktionskräfte, Auflagergrößen, Gleichgewichtsbedingungen in der Ebene und im Raum
- Schnittprinzipien und Schnittgrößenermittlung in der Ebene und im Raum
- Träger, Gelenkträger, über-/unterspannte Träger, Bögen, einfache Mischsysteme
- Flächenmomente
- Normalspannungen aus Normalkraft und Biegemomenten an symmetrischen und unsymmetrischen Querschnitten
- Spannungsnulllinie und Kernweite an symmetrischen und unsymmetrischen Querschnitte
- Schubfluss bzw. Schubspannungen aus Querkräften und Torsion an vollwandigen und dünnwandigen Querschnitten
- Schubmittelpunkt
- aktuelles Sicherheitskonzept
Fertigkeiten:

- Tragwerksformen idealisieren
- Auflagerkräfte effektiv ermitteln
- Methoden der Schnittgrößenberechnung richtig und effektiv anwenden
- Zustandslinien für Schnittgrößen darstellen
- Extremalwerte ermitteln
- Querschnittswerte komplexer zusammengesetzter Querschnitte berechnen
- Werte und Verläufe von Normalspannungen aus Normalkraft und Biegemomenten berechnen und darstellen
- Spannungsnulllinie und Kernweite ermitteln und darstellen
- Werte und Verläufe des Schubflusses und der Schubspannung aus Querkraft an vollwandigen und dünnwandigen Querschnitten berechnen und darstellen
- Schubmittelpunkt ermitteln

Kompetenzen:

- Fähigkeit, verantwortungsvoll und selbstständig Tragwerke und Lastabtragungen zu entwerfen und zu beurteilen sowie Schnittgrößen und Verformungen statisch bestimmter Tragwerke zu berechnen
- Selbstständige Ermittlung von Spannungsverläufen über den Querschnitt, Beurteilung der Lage der Spannungsnulllinie bzw. der Kernweite und Bewertung der Konsequenzen

Verwendbarkeit in diesem und in anderen Studiengängen

u.a. Baustatik III, Geotechnik I, Holzbau I, Massivbau I, Metallbau I

Zugangs- bzw. empfohlene Voraussetzungen

Technische Mechanik, Baustatik I

Inhalt

- Gleichgewichtsbedingungen in der Ebene und im Raum
- Schnittgrößen in der Ebene und im Raum
- Schnittprinzipien, Schnittgrößenermittlung
o Träger, Gelenkträger, über-/unterspannte Träger, Bögen, einfache Mischsysteme
o Flächenmomente 0., 1. und 2. Grades, Torsionquerschnittswerte
o Normalspannungen aus Normalkraft und Biegemomenten
o Schubfluss bzw. Schubspannungen aus Querkräften und Torsion
o vollwandige und dünnwandige Querschnitte
o symmetrische und unsymmetrische Querschnitte
o Spannungsnulllinie, Kernweite
o Schubmittelpunkt
o Festigkeit, Sicherheit, charakteristischer Wert, Bemessungswert

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen

Empfohlene Literaturliste

Gross et al: Technische Mechanik Band 1 und 2, Springer-Verlag
Lohmeyer et al: Baustatik 1 und 2, Vieweg+Teubner-Verlag
Kirsch: Statik im Bauwesen 1 und 2, Beuth-Verlag
Dallmann: Baustatik 1, Hanser-Verlag
Qualifikationsziele des Moduls

CAD II:

Kenntnisse:

Bedienungsweise eines auf dreidimensionalen Objekten basierten CAD-Systems am Beispiel von Nemetschek Allplan

Fertigkeiten:

- Erstellung von Wohngebäuden u.ä. in 3D auf Objektbasis
- bautypische Ableitungen (Grundriss, Schnitt, Ansicht)
- maßstabsgerechte Beschriftung
- Assoziativer Einbau von Bewehrungsstahl
o Erzeugen von Stahlauszügen und Mattenlisten
o Erstellung komplexer Pläne
o Erstellung einfacher Visualisierungen
o BIM-Austauschformate (IFC u.a.)

Kompetenzen:

Chemie:

Aufbauend auf den Kenntnissen aus dem Gebiet der Werkstoffe und Bauchemie, Korrosions- und Zersetzungsvorgänge der Materialien sollen Verfahren der Laboranalyse kennengelernt werden: Kathoden/Anodennachweise, quantitative Analysemethoden, Säuren, Basen, Redoxreaktionen, Zementchemie

Geotechnik:

Kenntnisse: bodenphysikalische Eigenschaften von Lockergestein

Fertigkeiten: Durchführung und Auswertung von bodenmechanischen Versuchen im Grundbaulabor

Kompetenz: selbstständige Ermittlung von Eigenschaften des Baugrunds

Verwendbarkeit in diesem und in anderen Studiengängen

Geotechnik I, Werkstoffe II, Umweltranalytik (UIW)

Zugangs- bzw. empfohlene Voraussetzungen

CAD II:

o Kenntnisse des technischen Zeichnens (z.B. aus B1104)

Chemie: Lehrveranstaltung Chemie
Geotechnik: keine

Inhalt

CAD II:
- Nemtschek Allplan
- Bauwerksstruktur, Ebenenmodelle
- 3D-Architektur-Objekte Wand, Decke, Stütze, Unterzug, Fenster, Tür, Dach
- 3D-Holzbau-Objekte Sparren, Pfette, Gaube
- 3D-Bewehrungs-Objekte: Stabstahl, Mattenstahl
- Verschneidung von 3D-Objekten, Kollisionkontrolle
- Austauschformate wie IFC

Prüfungsart: PStA (b/nb) - Prüfungsstudienarbeit ohne Note, nur bestanden oder nicht bestanden

Chemie:

Laborversuche - Kathoden/Anodennachweise, quantitative Analysemethoden, Säuren, Basen, Redoxreaktionen, Zementchemie

Prüfungsart: TN, PrB (Praktikumsbericht)

Geotechnik:

Durchführung von bodenmechanischen Versuchen zur Ermittlung folgender Eigenschaften von Lockergestein:

- Korngrößenverteilung
- Plastizitätsgrenzen
- Lagerungsichte
- Proctorversuch
- Durchlässigkeit
- Verformbarkeit
- Festigkeit
Prüfungsarten: TN, PrB (Praktikumsbericht)

Lehr- und Lernmethoden

CAD II: Seminaristischer Unterricht, Übung

Chemie: Praktikumversuche zur Bau-/Umweltchemie mit eigenständigen Versuchsdurchführungen

Geotechnik: Laborversuche, Laborpraktika

Besonderes

CAD II: Dual Studierende können die Prüfungsstudienarbeit in / mit ihrem Unternehmen zu einem Thema aus der Unternehmenspraxis verfassen.

Empfohlene Literaturliste

CAD II: online verfügbare Nemetschek Handbücher

Geotechnik:

- Schweitzer, Frank: Bodenmechanik-Praxis, Bauwerk Verlag, 2. Auflage, Berlin, 2005
- Umdrucke zur Vorlesung Geotechnik I
B-14 VERKEHRSWESEN

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Bernhard Bösl</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B3107 Verkehrswesen</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Bernhard Bösl</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
</tbody>
</table>
| Workload | Präsenzzeit: 60 Stunden
Selbststudium: 90 Stunden
Gesamt: 150 Stunden |
| Prüfungsarten | schr. P. 90 Min. |
| Dauer der Modulprüfung | 90 Min. |
| Gewichtung der Note | 5/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse:
- Begriffe aus dem Bereich des Verkehrswesens,
- Grundlagen zur Bewegung von Fahrzeugen und zur Fahrdynamik,
- Trassierung von Landstraßen,
- Grundlagen zum Entwurf von Stadtstraßen und
- Umwelteinwirkungen des Straßenverkehrs und insbesondere Schallschutz.

Fertigkeiten: Die Studierenden sollen
- Standardaufgaben des Entwurfs von Straßen entwickeln und planerisch umsetzen können,
- Infrastrukturmaßnahmen im Straßennetz umweltgerecht erarbeiten und beurteilen können und
- einfache Schallschutznachweise erstellen und beurteilen können.

Kompetenzen: Die Studierenden sollen
Die Studierenden erwerben Kenntnisse zu folgenden Inhalten:

- Grundbegriffe des Verkehrs
- Physikalische und technische Grundlagen zum Straßen- und Schienenverkehr
- Funktionale Gliederung des Straßennetzes
- Grundlagen der Trassierung von Landstraßen
- Grundlagen des Entwurfs von Stadtstraßen
- Umwelteinwirkungen des Verkehrs einschließlich Lärmschutz

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Übungen

Empfohlene Literaturliste

A. Bracher, B. Bösl., G. Wolf, Straßenplanung, Werner Verlag Köln
H. Natzschka, Straßenbau Entwurf und Bautechnik, B.G. Teubner Verlag Stuttgart
Vorlesungsskript Verkehrswesen
Qualifikationsziele des Moduls

Kenntnisse:
- Naturwissenschaftliche Grundlagen
- Enstehungsgeschichte, Aufbau und Zusammensetzung von Boden und Fels
- Bodenarten, Bodengruppen und Homogenbereiche
- Arten von Gründungen und Stützbauwerken
- Eigenschaften von Hängen und Böschungen
- Maßnahmen zur Baugrundverbesserung und Wasserhaltung

Fertigkeiten:
- Bodenzustand- und -eigenschaften ermitteln
- Spannungen und Verformungen ermitteln
- Wasser im Boden - Auftrieb, Durchlässigkeit, Kapillarität ermitteln
o Feld- und Laboruntersuchungen durchführen
o Baugrundmodell entwickeln
o Flach- und Tiefgründungen planen und berechnen
o Stützbauwerke und Baugruben planen und berechnen
o Hänge beurteilen, Böschungen planen und berechnen
o Baugrundverbesserungen planen und berechnen
o Wasserhaltungen planen und berechnen
o Nachweise für Standsicherheit und Gebrauchstauglichkeit führen (kippen, Gleiten, Grundbruch, Auftrieb, Setzungen, Böschungs- und Geländebruch)

Kompetenz:

o Verständnis der Eigenschaften des Baugrunds
o Selbständiges Entwerfen, Planen und Berechnen geotechnischer Bauwerke

Verwendbarkeit in diesem und in anderen Studiengängen

Geotechnik II (Master)

Zugangs- bzw. empfohlene Voraussetzungen

Erfolgreiche Teilnahme an dem geotechnischen Laborpraktikum

Inhalt

o Überblick über die Grundlagen
 Entwicklung, Begriffsbestimmungen, geotechnische Kategorien, bautechnische Bestimmungen

o Bodenarten und ihre Eigenschaften

o Bodenphysikalische Eigenschaften, Bodenuntersuchungen im Feld und Labor, Erkennen und Einstufen der Bodenarten und ihrer bautechnischen Eigenschaften als Baugrund und Baustoff, Bestimmung von Bodenkenngrößen und deren Bandbreite aufgrund von Erfahrungswerten, geotechnischer Bericht

o Scherfestigkeit

o Wasser im Boden

o Spannungen und Setzungen
Grundelemente der Erdstatik Erddruck und Erdwiderstand,
Sicherheitskonzept in der Geotechnik
Flächengründungen: Standsicherheits- und Gebrauchstauglichkeitsnachweise, Ausführungsarten
Böschungen und Stützkonstruktionen: Böschungs- und Geländebruch
Baugrubensicherungen (Herstellung und Grundlagen der Nachweisführung)
Pfahlgründungen: Herstellung und Nachweisführung bei statisch bestimmten Systemen
Hydraulischer Grundbruch und Auftrieb

Lehr- und Lernmethoden
Seminaristischer Unterricht und Übung

Empfohlene Literaturliste

Kolymbas, D.: Geotechnik - Bodenmechanik, Grundbau und Tunnelbau; 5. Auflage; Springer; 2019

Schmitt et al.: Simmer Grundbau 1: Bodenmechanik und erdstatisch Berechnungen; 20. Auflage; Springer; 2021

Kuntsche, K; Richter, S.: Geotechnik: Erkunden - Untersuchen - Berechnen - Ausführen - Messen; 3. Auflage; 2021

Lang et al.: Bodenmechanik und Grundbau; 9. Auflage; Springer; 2011

Ziegler, M.: Geotechnische Nachweise nach EC 7 und DIN 1054; 3. Auflage; Ernst & Sohn; 2012

Witt, K.; Grundbau-Taschenbuch; Teil 1: Geotechnische Grundlagen; 8., Auflage; 2017; Teil 2: Geotechnische Verfahren; 8. Auflage; 2018; Teil 3: Gründungen und geotechnische Bauwerke; 8. Auflage; 2018

Eurocodes, DIN-Normen sowie EA-Pfähle, EA-Baugrubenumschließungen, EA-Ufereinfassung; EA- Numerik in der Geotechnik sowie EA-Baugrunddynamik in der aktuellen Fassung
B-16 VERMESSUNG

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Bernhard Bösl</td>
</tr>
</tbody>
</table>
| Kursnummer und Kursname | B3209 Vermessung 1
 | B4202 Vermessung 2 |
| Lehrende | Prof. Dr. Bernhard Bösl |
| Semester | 3, 4 |
| Dauer des Moduls | 2 Semester |
| Häufigkeit des Moduls | jährlich |
| Art der Lehrveranstaltungen | Pflichtfach |
| Niveau | Bachelor |
| SWS | 5 |
| ECTS | 5 |
| Workload | Präsenzzeit: 75 Stunden
 | Selbststudium: 75 Stunden
 | Gesamt: 150 Stunden |
| Prüfungsmethoden | schr. P. 90 Min. |
| Dauer der Modulprüfung | 90 Min. |
| Gewichtung der Note | 5/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse:
- Grundlagen der Vermessungstechnik (Maßeinheiten, Bezugsflächen, Koordinatensysteme),
- Instrumente zur Lage- und Höhenmessung,
- Gängige Verfahren zur Berechnung von Lagekoordinaten und Höhen,
- Berechnung von Flächen und Volumina und
- Grundlagen zur Photogrammetrie und Satellitengeodäsie.

Fertigkeiten: Die Studierenden sollen
- Messungen der Höhe durch Nivellement und trigonometrische Messung durchführen können,
- Messungen der Lage, von Horizontalwinkeln und von Distanzen durchführen können,
- Karten und Pläne benutzen und herstellen können,
einfache Flächen und Volumenberechnungen durchführen können und vorhandene Vermessungsdaten fachgerecht benutzen können.

Kompetenzen: Die Studierenden sollen

- Vermessungsinstrumente eigenständig nutzen können,

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlagenfach für viele weitere Fächer bis zur Bachelorarbeit

Zugangs- bzw. empfohlene Voraussetzungen

Zulassungsvoraussetzung für die Prüfung ist die erfolgreiche Teilnahme am Praktikum

Inhalt

- Maßeinheiten, Bezugsflächen und Koordinatensysteme
- Einfache Absteckungsmethoden
- Verfahren und Geräte zur Lagebestimmung
- Verfahren und Geräte zur Höhenbestimmung
- Grundlegende Methoden der Koordinatenberechnung
- Grundlagen zur Flächen- und Volumenberechnung
- Grundlagen zu Photogrammetrie und Satellitengeodäsie
- Praktische Outdoor-Übungen

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Übungen, Praktikum

Empfohlene Literaturliste

Matthews Volker, Vermessungskunde Teil 1 und 2, B.G. Teubner Verlag Stuttgart

Gelhaus Rolf, Kolouch Dieter, Vermessungskunde für Architekten und Ingenieure, Werner Verlag Düsseldorf
Gruber Franz Josef, Formelsammlung für das Vermessungswesen, Ferdinand Dümmler Verlag Bonn

Vorlesungsskript Vermessungskunde
B-17 BAUSTATIK III

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Florian Neuner</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B4103 Baustatik III</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Florian Neuner</td>
</tr>
<tr>
<td>Semester</td>
<td>4</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 90 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 60 Stunden</td>
</tr>
<tr>
<td></td>
<td>Virtueller Anteil: 30 Stunden</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>schr. P. 120 Min.</td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>120 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>6/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehr sprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Kenntnisse

- Differentialgleichung der Balkenbiegung.
- Prinzip der virtuellen Arbeiten.
- Vertauschungssätze von Betti und Maxwell.
- Kraftgrößenverfahren (ebene und einfache räumliche Strukturen).
- Grundlagen der Stabilitätstheorie.
- Grundlagen der Theorie II. Ordnung.
- Grundlagen der Theorie ebener Flächentragwerke

Fertigkeiten

Die Studierenden

- beherrschen die elementaren „Handrechenverfahren“ zur Ermittlung von Schnittkräften und Verformungen auch statisch unbestimmter Systeme,
o sind in der Lage an einfachen Systemen die Wirkungen von Temperaturänderungen, Vorspannungen, Setzungen und anderen Lastarten auf die Zustandsgrößen selbständig zu berechnen und die erhaltenen Ergebnisse kritisch zu analysieren,

o sind befähigt Stabilitätsprobleme zu erkennen und diese in einfachen Fällen auch durch eine eigenständige Berechnung nach Theorie II. Ordnung zu untersuchen,

o kennen die Anwendungsgrenzen der Theorie der Stabwerke,

o verfügen über Grundlagenkenntnisse in der Theorie ebener Flächentragwerke.

Kompetenzen

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlage und Ergänzung der Lehrinhalte sämtlicher konstruktiver Fächer

Zugangs- bzw. empfohlene Voraussetzungen

Baustatik II (Zulassungsvoraussetzung zur Prüfung in Baustatik III)

Inhalt

1. Formänderungen von Stabwerken

Formänderungen aus Normalkraft, Biegung, Querkraft, Torsion und Temperatur
Prinzip der virtuellen Arbeiten
Vertauschungssätze von Betti und Maxwell

2. Kraftgrößenverfahren

Mehrfach statisch unbestimmte Systeme
Reduktionssatz
Temperaturwirkungen
Vorspannung
Lagerverschiebungen

3. Stabilitätstheorie

Arten des Gleichgewichts

Stabilität von Tragwerken idealisiert durch Starrkörper und Federn

Eulersche Knickfälle

Differentialbeziehung der Biegelinie nach Theorie II. Ordnung

Näherungsverfahren für Berechnungen nach Theorie II Ordnung

Einflüsse nichtlinearen Werkstoffverhaltens

Lehr- und Lernmethoden

Seminaristischer Unterricht mit mindestens einer selbstständigen Übungseinheit je Doppelstunde.

Empfohlene Literaturliste

Neuner, F.: Baustatik III, Skriptum zur Vorlesung (laufend aktualisiert)
B-18 MASSIVBAU I

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Hans Bulicek</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B4104 Massivbau I</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Hans Bulicek</td>
</tr>
<tr>
<td>Semester</td>
<td>4</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td></td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td></td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>90 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>6/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Die Studierenden werden dazu befähigt, einfache Stahlbetonkonstruktionen zu entwerfen, zu bemessen und die Anforderungen an deren Herstellung und bauliche Durchbildung zu beschreiben.

Die vermittelten Kenntnisse umfassen neben dem reinen Normenwissen auch Kenntnisse aktueller Bauarten und Bauverfahren im Hochbau.

Zudem werden sie mit den wesentlichen Aspekten der baulichen Durchbildung von Stahlbetonkonstruktionen vertraut gemacht.

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlage und Ergänzung der Lehrinhalte sämtlicher konstruktiver Fächer im Bachelor- und Masterstudium

Zugangs- bzw. empfohlene Voraussetzungen

Technische Mechanik, Werkstoffe im Bauwesen
Inhalt

1. Einführung
2. Überblick über die Werkstoffkomponenten
3. Grundlagen der Bemessung im Grenzzustand der Tragfähigkeit
4. Grundlagen der Bemessung im Grenzzustand der Gebrauchstauglichkeit
5. Grundlagen in der baulichen Durchbildung

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen

Empfohlene Literaturliste

Bücher:
Leonhardt, F.: Vorlesungen über Massivbau, Teile 1 bis 6, Springer-Verlag
Wommelsdorf, O.: Stahlbetonbau, Bemessung und Konstruktion, Teil 1: biegebeanspruchte Bauteile, Teil 2: Stützen und Sondergebiete des Stahlbetonbaus
Deutscher Beton- und Bautechnik-Verein E.V. (DBV): Beispiele zur Bemessung nach Eurocode 2, Band 1: Hochbau

Zeitschriften:
Beton- und Stahlbetonbau, Verlag Ernst & Sohn
Bauingenieur, Springer-Verlag

Schriftenreihen:
Hefte des Deutschen Ausschuß für Stahlbeton (DAfStb), Beuth Verlag, z. B.
Grasser, E.; Kordina, K; Quast, U.: Heft 220, Bemessung von Beton- und Stahlbetonbauteilen
Grasser, E.: Heft 240, Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken

Betonkalender, Teile 1 und 2, Verlag Ernst & Sohn, erscheint jährlich mit wechselnden Beiträgen

Vorschriften:

DIN 4102-4: Brandverhalten von Baustoffen und Bauteilen

DIN EN 206-1: Beton, Teil 1: Festlegungen, Eigenschaften, Herstellung und Konformität

Qualifikationsziele des Moduls

Kenntnisse

- Materialeigenschaften und -verhalten von Holz (und Holzwerkstoffen)
- Spannungs- und Stabilitätsnachweise ein- und mehrteiliger Holzbauteile
- Verbindungsmittel im Holzbau
- Verfahren nach Johansen vs. vereinfachtes Verfahren
- Querzugproblematik und Querzugverstärkung
- Ausklinkung
- Versatz
- Brandschutz

Fertigkeiten:

- Gefühl für die Besonderheiten des Werkstoffes Holz besitzen
o einfache Tragkonstruktionen entwickeln und bemessen
o Anschlüssen konstruieren und bemessen
o Verstärkungmaßnahmen planen

Kompetenz:
Befähigung zum verantwortungsvollen und selbstständigen Entwerfen, Konstruieren und Bemessen von einfachen Holzbauwerken sowie zum kritischen Hinterfragen von Bemessungshilfen

Verwendbarkeit in diesem und in anderen Studiengängen
Holzbau II (Master MBU)

Zugangs- bzw. empfohlene Voraussetzungen
Technische Mechanik, Baustatik I, Baustatik II

Inhalt
Die Vorlesungen erfolgen zurzeit auf der Grundlage des Eurocode 5.

o Materialeigenschaften von Holz und Holzwerkstoffen
o Sicherheitskonzept: Einwirkungen und Widerstände
o Einfluss des Modifikationsbeiwertes
o Bemessung ein- und mehrteiliger Holzbauteile auf Zug, Druck, Biegung und Schub
o Besonderheiten der Bemessung bei Stabilitätsproblemen
o Nachweise und konstruktive Gestaltung von Anschlüssen mit Stabdübeln, Bolzen, Nägeln, Schrauben und Dübeln besonderen Bauart
o Verfahren nach Johansen vs. vereinfachtes verfahren
o Querzugproblematik und Möglichkeiten der Querzugverstärkung am Beispiel der Ausklinkung
o Besonderheiten von zimmermannsmäßigen Verbindungen am Beispiel des Versatzes
o Brandschutz

Lehr- und Lernmethoden
Seminaristischer Unterricht, Übungen
Empfohlene Literaturliste

Vorlesungsumdruck

Colling: Holzbau, Vieweg-Verlag

Neuhaus: Ingenieurholzbau, Vieweg+Teubner Verlag

DIN EN 1995-1-1:2014, Beuth-Verlag

DIN EN 1995-1-1/NA:2013, Beuth-Verlag
Qualifikationsziele des Moduls

Die Studierenden sollen ein übergeordnetes Grundverständnis für das deutsche Rechtssystem erhalten.

Fachkompetenz:

- Grundsystematik des deutschen Rechtssystems
- Rechtsquellen und deren Wertigkeit
- Allgemeiner Teil BGB
- Allgemeines Schuldrecht
- Kauf und Werkvertragsrecht
- Bauvertragsrecht des BGB
- Produkt- und Produzentenhaftung
- Recht der Unerlaubten Handlungen
- Eigentum und Besitz
Grundzüge des Handels- und Gesellschaftsrechts

Methodenkompetenz:
Mit Hilfe obiger Kenntnisse sind die Studierenden in der Lage, rechtliche Zusammenhänge bei Baumaßnahmen zu verstehen und zu bewerten. Sie erkennen rechtliche Probleme und sind in der Lage einfache Rechtsfälle zu lösen und Verträge aus der Baupraxis selbst zu erstellen und zu bewerten.

Soziale Kompetenzen:
Die Studierenden können teamorientiert Leitungsfunktionen in Unternehmen der Baubranche übernehmen. Sie sind in der Lage ihre Mitarbeiter zu führen und fachlich weiterzubilden.

Verwendbarkeit in diesem und in anderen Studiengängen

Praxis des Bau- und Umweltrechts (Master)

Zugangs- bzw. empfohlene Voraussetzungen
Keine

Inhalt
o Grundsystematik des deutschen Rechtssystems
o Rechtsquellen und deren Wertigkeit
o Allgemeiner Teil BGB
o Allgemeines Schuldrecht
o Kauf und Werkvertragsrecht
o Bauvertragsrecht des BGB
o Produkt- und Produzentenhaftung
o Recht der Unerlaubten Handlungen
o Eigentum und Besitz
o Grundzüge des Handels- und Gesellschaftsrechts

Lehr- und Lernmethoden
Seminaristischer Unterricht mit Übungen
Empfohlene Literaturliste

Vorlesungsskript

Münchener Kommentar BGB, München 8. Auflage 2020

Messerschmidt/Voit, Privates Baurecht, 3. Auflage 2018

Vygen/Wirth/Schmidt, Bauvertragsrecht Praxiswissen, Bundesanzeiger Verlag Köln 8. Auflage 2018

B-21 PRAKTIKUM

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Gerd Maurer</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B5101 PLV - Praxisbegleitende Lehrveranstaltung B5102 Praktikum</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Gerd Maurer</td>
</tr>
<tr>
<td>Semester</td>
<td>5</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>PLV, Pflichtfach</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Gerd Maurer</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>30</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 60 Stunden Selbststudium: 840 Stunden Gesamt: 900 Stunden</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>30/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Praktikum:

Kenntnisse:

- Praktische Kenntnisse
- Praktische Tätigkeit
- Anwendung ingenieurwissenschaftlicher Grundlagen
- Verschiedene Einsatzbereiche mit ingenieurtechnischen Aufgaben

Fertigkeiten:

- Anwendung o.g. Kenntnisse
- Verstehen von praxisrelevanten Fragestellungen
o Ausführen von praxisnahen Tätigkeiten des Bauingenieurwesens
o Entwickeln und Durchführen von praktischen Projekten in Firmen oder Ingenieurbüros

Kompetenzen:

o Praxiserfahrungen
o Berufskompetenz
o kreative Problemlösungen
o selbständiges Bearbeiten von Fragestellungen
o eigenständiges Beurteilen und Bewerten von praktischen Ingenieuraufgaben
o Studien- und Persönlichkeitskompetenz

PLV:

Kenntnisse:
Vermittlung von Schlüsselqualifikationen (Baustellensicherheit, Präsentationstechniken, wissenschaftliches Arbeiten, Literaturrecherche, Berufskompetenzen)

Fertigkeiten:

o Erstellen und Halten einer Präsentation
o Recherche nach Literatur und Umgang mit Literatur
o Verstehen von Grundlagen zur Studien- und Persönlichkeitskompetenz
o Erstellen eines SiGeKo-Plans
o wissenschaftliches Arbeiten

Kompetenzen:

o Berufskompetenzen
o Persönlichkeitskompetenzen
o Selbständige Erarbeitung wichtiger Grundlagen zur Berufs- und Persönlichkeitskompetenz in den Seminaren
o verantwortungsvolle Interpretation von vermitteltem Wissen
o Bewerten von Fragestellungen zu verschiedenen Themen sowie zur Baustellensicherheit
Verwendbarkeit in diesem und in anderen Studiengängen

In diesem Modul erwerben die Studierenden praktische Erfahrungen, um die Module im 6. und 7. Sem. besser verstehen zu können und ihr späteres berufliches Umfeld kennenzulernen. Zudem erwerben sie Fertigkeiten und Kompetenzen für ihre spätere berufliche Tätigkeit.

Zugangs- bzw. empfohlene Voraussetzungen

Praktikum: mindestens 65 ECTS-Leistungspunkte aus dem bisherigen Studium

PLV: keine; Für alle Veranstaltungen besteht Anwesenheitspflicht.

Inhalt

Praktikum:

Praktische Tätigkeit im Bereich von Ingenieurbüros, Beratenden Ingenieuren, Bauunternehmen, Bauverwaltungen (öffentlicher Dienst)

Für den erfolgreichen Abschluss des Praktikums müssen die Studierenden einen ausführlichen Praktikumsbericht schreiben sowie eine Praktikumsbescheinigung (Praktikumszeugnis) der Firma einreichen. Außerdem ist die Arbeitsplatzbeurteilung in der Online-Praktikumsverwaltung auszufüllen.

PLV:

Für alle Veranstaltungen besteht Anwesenheitspflicht.

- 1. bis 4. Semester: Teilnahme an Kursen des Career Service zu Präsentationstechniken, Literaturrecherche und Datenbanken, Studien- und Persönlichkeitskompetenz und Berufskompetenz sowie Teilnahme am Berufsforum

- 4. Semester: Teilnahme am SiGeKo-Lehrgang (Baustellensicherheit) in Zusammenarbeit mit der Berufsgenossenschaft Bau inkl. schriftlicher Prüfung

- 5. Semester: Teilnahme am Bau- und Umweltsymposium der Fakultät (Fachseminar)

- 6. Semester: Praktikumsreferat - Präsentation der Erfahrungen der praktischen Tätigkeit

Lehr- und Lernmethoden

Praktische Tätigkeit, Seminare, Seminaristischer Unterricht, Präsentation

Besonderes
Praktikum:

Dual Studierende verbringen das Praxissemester in ihrem Unternehmen (längste Praxisphase des dualen Studiums)

PLV:

Dual Studierende absolvieren abweichende PLV-Seminare

- 1. bis 4. Semester: Teilnahme an Kursen des Career Service bzw. der Bibliothek zu Literaturrecherche und Datenbanken

- 4. Semester: Teilnahme am SiGeKo-Lehrgang (Baustellensicherheit) in Zusammenarbeit mit der Berufsgenossenschaft Bau inkl. schriftlicher Prüfung

- 5. Semester: Teilnahme am Bau- und Umweltsymposium der Fakultät (Fachseminar)

- 6. Semester: Praxisreflexion - Präsentation der Erfahrungen der praktischen Tätigkeit sowie Diskussion und Austausch mit den anderen dual Studierenden und dual Beauftragten

Empfohlene Literaturliste

Praktikum: diverse Literatur und Internetseiten der jeweiligen Praktikumsunternehmen und Tätigkeitsbereiche im Praktikum

SiGeKo: ArbSchG, SiGeKo Rechtsverordnungen (BauStellV, BetrSichV), aktuelle Literatur zur Baustellensicherheit

diverse Seminarunterlagen

wissenschaftliches Arbeiten: Kompaktwissen Wissenschaftliches Arbeiten, Eine Anleitung zu Techniken und Schriftform; Reclam Verlag

Präsentationstechniken:

- Seifert, W., Visualisieren Präsentieren Moderieren, Gebundene Ausgabe (2011), Gabal Verlag

Qualifikationsziele des Moduls

Kenntnisse

- Werkstoff Stahl (Eigenschaften, Auswahlkriterien, Korrosionsschutz),
- Grundlagen der Bemessung,
- Herstellungsmethoden und grundlegende Bemessungskonzepte von Verbindungen,
- Gestaltung und Nachweis von Verbindungen,
- Konstruktionselemente im Stahl- und Stahlverbundbau,
- Nachweise einfacher Stahlkonstruktionen,
- Grundlagen der Stabilitätstheorie im Stahlbau,
- Grundlagen des Brandschutzes,
- Eckwerte der Kostenschätzung.

Fertigkeiten
Die Studierenden beherrschen Konstruktion und Bemessung einfacher Tragwerke aus Stahl, auch solcher, bei denen Stabilitätsnachweise unter Druck und Biegung zu führen sind.

Kompetenzen

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlage und Ergänzung der Lehrinhalte sämtlicher konstruktiver Fächer im Bachelor- und Masterstudium Metallbau II (Master)

Zugangs- bzw. empfohlene Voraussetzungen

Baustatik II, Baustatik III (Zulassungsvoraussetzung zur Prüfung in Metallbau I)

Inhalt

- Kurze Einführung
- Überblick über Stähle und Stahlerzeugnisse
- Grundlagen der Bemessung
- Herstellung und Bemessung von Schweiß- und Schraubverbindungen
- Konstruktionselemente
- Bemessung einfacher Stahlkonstruktionen
- Brandschutz

Lehr- und Lernmethoden

Seminaristischer Unterricht mit mindestens einer selbstständigen Übungseinheit je Doppelstunde.

Empfohlene Literaturliste
Neuner, F., Springer, O.: Metallbau I, Skriptum zur Vorlesung (laufend aktualisiert)

Petersen C.: Stahlbau, Vieweg (2021)

http://www.bauen-mit-stahl.de
Qualifikationsziele des Moduls

Massivbau II

Kenntnisse

Zudem werden sie mit den wesentlichen Aspekten der baulichen Durchbildung von Spannbetonhochbau- und Brückenkonstruktionen vertraut gemacht.

Kompetenzen

Die Studierenden werden dazu befähigt, einfache Spannbeton- und Brückenkonstruktionen zu entwerfen, zu bemessen und die Anforderungen an deren Herstellung und bauliche Durchbildung zu beschreiben.

Die Studierenden sollen aktuelle Problemstellungen in der Anwendung der Werkstoffe des Bauwesens kennen und in der Lage sein dieses Wissen baupraktisch umzusetzen. Ihre Kenntnisse reichen aus, sich auch in komplexere Problemstellungen

Werkstoffe II

Kenntnisse

1. Erweiterte Betontechnologische Kenntnisse:
 o Mechanisches Verhalten und Modelle der inneren Lastabtragung und Gefügebruch, sowie verfahrenstechnische Besonderheiten von Sonderbetone wie HPC/UHPS, SSC, Pulverbeton, Leichtbeton im Vergleich zum Normalbeton
 o Kapillares Schwinden/plastisches Schwinden und Trocknungsschwinden, insb. bei Beton für Fahrbahnplatten und Industrieestriche, Rissbildungen
 o Besonderheiten zur Herstellung schadfreier und dauerhafter Betonoberflächen (Träffestigkeit, Blutwasser, Glätten) bis zur Herstellung von Sichtbeton
 o Praktikum zur Herstellung von Sonderbetonen

2. Organische Werkstoffe im Bauwesen
 o Beschichtungen und Oberflächenschutz von Stahl, Beton, Holzschutz
 o Polymere Klebstoffe im Bauwesen
 o Abdichtungsstoffe (kautschukartige, bituminöse) und Abdichtungstechnik
 o Erweiterte Kenntnisse Holz, Holzwerkstoffe

Fertigkeiten

o Sie kennen die Eignung, Dauerhaftigkeit und Beanspruchbarkeit von Sonderbetonen.

o Sie können Materialprüfungen nach Norm durchführen und die Ergebnisse beurteilen.

o Die Studierenden verfügen über erweiterte Kenntnisse im Umgang mit organischen Baustoffen und Abdichtungen.

Kompetenzen
Durchführung und Bewertung der Ergebnisse von Materialprüfungen für Sonderbetone, Beschichtungen, Klebstoffe, Abdichtungen und Holz

Entwurf von Sonderbetonmischungen, Kenntnisse der verfahrenstechnischen Besonderheiten

Vorbereitung auf die Prüfung zum E-Schein zur Prüfung von BII Betonen

Auswahl von für den Anwendungszweck geeigneten Werkstoffen und Bewertung der Anwendungsgrenzen

Mithilfe bei der Entwicklung neuer Werkstoffe im Bauwesen

Kenntnis der Baustoffnormen und der zugrundeliegenden Prüfungen

Mithilfe bei Zulassungsverfahren für Baustoffe und Bauteile

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlage und Ergänzung der Lehrinhalte sämtlicher konstruktiver Fächer im Bachelor- und Masterstudium

Master: Massivbau III

Zugangs- bzw. empfohlene Voraussetzungen

Massivbau II: Technische Mechanik, Werkstoffe I, Massivbau I, Stahlbau I, Holzbau I

Werkstoffe II: Werkstoffe I, Chemie, Laborpraktikum Chemie, Technische Mechanik

Inhalt

Massivbau II

Einführung

Überblick über die Werkstoffkomponenten der Spannbetonbauweise

Grundlagen der Bemessung von Spannbetonbauwerken im Grenzzustand der Tragfähigkeit und Grenzzustand der Gebrauchstauglichkeit

Grundlagen in der baulichen Durchbildung von Spannbetontragwerken

Grundlagen des Entwerfens, Konstruierens und Bauens von Brückenbauten in Massivbauweise

Erweiterte Grundlagen der Werkstoffphysik und Materialprüfung

Erweiterte betontechnologische Kenntnisse, Sonderbetone;
Werktstoffe II

1. Betontechnologie II

- Mechnisches Verhalten und Modelle der inneren Lastabtragung und Gefügebruch, sowie verfahrenstechnische Besonderheiten von Sonderbetone wie HPC/UHPS, SSC, Pulverbeton, Leichtbeton im Vergleich zum Normalbeton

- Kapillares Schwinden/plastisches Schwinden und Trocknungsschwinden insb. bei Beton für Fahrbahnplatten und Industriestriche, Rissbildungen

- Besonderheiten zur Herstellung schadffreier und dauerhafter Betonoberflächen (Trittfestigkeit, Blutwasser, Glätten) bis zur Herstellung von Sichtbeton

- Praktikum zur Herstellung von Sonderbetonen

2. Organische Werkstoffe im Bauwesen

- Grundlagen zur Chemie und Physik der Polymeren Werkstoffe / Kunststoffe

- Überblick zu den im Bauwesen verwendeten Kunststoffen

- Fasern und Textilien

- Beschichtungen und Oberflächenschutzsysteme: Mineralische Beschichtungen und Putze, Organische Polymere zum Beschichten von Beton, Vorschriften (ZTV-SIB, OSS, ZTV-BELB)

- Verbindungsmittel; Grundlagen der Klebetechnik, Klebstoffe für Metalle, mineralische Stoffe und Holz; Dauerhaftigkeit

- Abdichtungsstoffe (kautschukartige, bituminöse) und Abdichtungstechnik

- Erweiterte Kenntnisse Holz, Holzwerkstoffe und Holzschutz

- Praktikum in Beschichtungstechniken, Rissverfüllung, nachträgliche Abdichtungstechniken

- Beschichtungen von Stahl
Lehr- und Lernmethoden

Massivbau II: Seminaristischer Unterricht, Übungen
Werkstoffe II: Seminaristischer Unterricht, Übungen, Laborpraktikum

Empfohlene Literaturliste

Bücher:
Leonhardt, F.: Vorlesungen über Massivbau, Teil 6, Grundlagen des Massivbrückenbaus Springer-Verlag
Holst, K.-J.: Brücken aus Stahlbeton und Spannbeton, Ernst & Sohn
Homberg, H.: Berechnung von Brücken unter Militärlasten, Werner-Verlag

Zeitschriften:
Beton- und Stahlbetonbau, Verlag Ernst & Sohn
Bauingenieur, Springer-Verlag
Bautechnik, Verlag Ernst & Sohn

Schriftenreihen:
Betonkalender, Teile 1 und 2, Verlag Ernst & Sohn, erscheint jährlich mit wechselnden Beiträgen
Stahlbau Kalender, Verlag Ernst & Sohn

Vorlesungsunterlagen/Skripte
Qualifikationsziele des Moduls

Kenntnisse:
Abwasserarten, Abwassermengen, Kanalnetzdensionierung (Kontinuitätsgleichung, Strömungskennzahlen, etc.), Anlagen und Bauwerke der Ortsentwässerung, Regenwasserbewirtschaftung, Mischwasserentlastungsanlagen (Regenüberläufe, Regenüberlaufbecken, Regenrückhaltebecken, Stauraumkanäle etc.), Niederschlagswasserbehandlungsanlagen (Regenkläranlagen, Versickerungsanlagen etc.).

Hydrologie und Gewässerkunde, Gerinnehydraulik, ökologischer Gewässerausbau, Anlagen im und am Gewässer (Wehre, Abstürze, Rampen, etc.), Planungsgrundlagen und Bauwerke der Wasserversorgung.

Fertigkeiten:
Anwenden hydraulischer Berechnungsverfahren sowie Bemessung von wasserbaulichen Anlagen und Bauwerken der Wasserversorgung.

Kompetenzen:

Eigenständige Beurteilung von wichtigen hydraulischen und hydrologischen Randbedingungen sowie die eigenständige Vorplanung von Bauwerken der Wasserversorgung und Bauwerken im Gewässerausbau und des Hochwasserschutzes.

Verwendbarkeit in diesem und in anderen Studiengängen

Vertiefung "Umwelt und Infrastruktur" (BIW) bzw. "Umwelt und Nachhaltigkeit" (UIW), Bachelorarbeit

Ausgewählte Kapitel der Wasserwirtschaft, Regenerative Energien II, Grundwasserschutz und Wasseraufbereitung (Master)

Zugangs- bzw. empfohlene Voraussetzungen

Grundlagen der Hydromechanik

Inhalt

Abwasserableitung:
- Prinzipien der Abwasserentsorgung
- Methoden der Entwässerung
- Bemessungskriterien von Abwasserentsorgungssystemen
- Grundlagen der Bemessung und Ermittlung des Abwasseranfalls und der wesentlichen Abwasserparameter (Abwasserzusammensetzung, hydraulische Grundlagen, Schmutzwasser, Fremdwasser, Regenwasser)
- Darstellung ausgewählter Anlagenteile
- Beschreibung der Funktionsweise, Wirkung im Gesamtsysteme und relevanter Grundlagen für die Bemessung
Wasserbau

- Hydrologie
 - Wasserkreislauf - Niederschlag, Abfluss, Rückhalt, Verdunstung
 - Ökologie stehender und fließender Gewässer
- Hydromechanik 2
 - Gerinnehydraulik 1
 - Wechselsprung und Tosbecken
 - Instationärer Abfluss - Schwall und Sunk
- Gewässerausbau - Gewässerökologie
 - naturgemäße Bauweisen
- Hochwasserschutz
 - Bemessungsgrundlagen 1
 - Hochwasserschutzbausteine
- Bauwerke im und am Gewässer
 - Planungen und Konstruktion
- Wasserbaupraktikum

Wasserversorgung

- Wasserbedarf
- Wasservorkommen
- Bauwerke der Wasserversorgung 1

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen, Praktikum

Empfohlene Literaturliste

DWA A 128 (1992), Richtlinien für die Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen, Gesellschaft zur Förderung der Abwassertechnik e. V., Hennef.

DWA A 117 (2006), Bemessung von Regenrückhalteräumen, Gesellschaft zur Förderung der Abwassertechnik e. V., Hennef.

Wittenberg: Praktische Hydrologie, Springer-Verlag 2011
Zanke, Ulrich: Hydraulik für den Wasserbau, Springer-Verlag 2013
Heinemann, Feldhaus: Hydraulik für Bauingenieure, Springer-Verlag 2003
Peter: Überfälle und Wehre - Grundlagen und Berechnungsbeispiele, Springer-Verlag 2005
Rautenberg, Fritsch: Mutschmann/Stimmelmayr Taschenbuch der Wasserversorgung, Springer-Verlag 2014
Lecher, Lühr, Zanke: Taschenbuch der Wasserwirtschaft, Springer-Verlag 2000
DVGW-Merkblätter zur Wasserversorgung
DWA-Merkblätter zum Wasserbau und zur Hydraulik
Qualifikationsziele des Moduls

Kenntnisse:
Abwasserarten, Abwassermengen, Abwasserbeschaffenheit, Verfahren der Abwasser- und Schlammbehandlung (mechanische Abwasserreinigung, biologische Abwasserreinigung, Schlammbehandlung, weitergehende Abwasserreinigung)

Gerrinnehydraulik 2, Anlagen in und am Gewässer 2, Bemessung Hochwasserschutz

Fertigkeiten:
Planung und Dimensionieren von Anlagen der Abwasserreinigung (Kläranlagen), Darstellen von o.g. Verfahren, Analysieren von bestehenden Anlagen, Konzepte zu den o.g. Themenfeldern entwickeln, verstehen und Anwenden von Bemessungsregeln, Entwicklung von Konzepten zur Behandlung von Schmutz- und Mischwässern, Zustandsbewertung von Abwassersysteme

Kompetenzen:
Verständnis für die interdisziplinären und ökologischen Aufgaben der Siedlungswasserwirtschaft und deren Verfahren, Mitwirkung bei Planung, Bau und

Eigenständige Ermittlung der notwendigen Randbedingungen und Ziele für die Planung von Wasserversorgungsanlagen und Hochwasserschutzsysteme.

Eigenständige Bemessung und Planung von Bauwerken der Wasserversorgung und von Wasserbauten.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. beim Anfertigen der Bachelorarbeit, Vertiefung "Umwelt und Infrastruktur" (BIW) bzw "Umwelt und Nachhaltigkeit" (UIW)

Ausgewählte Kapitel der Wasserwirtschaft, Industrieabwasserreinigung und Toxikologie (Master)

Zugangs- bzw. empfohlene Voraussetzungen

Chemie, Grundlagen der Hydromechanik, Wasserwirtschaft I

Inhalt

Abwasserreinigung:
- Prinzipien der Abwasserreinigung (mechanisch, biologisch)
- Methoden der Ermittlung von Betriebsdaten
- Bemessungskriterien von Abwasserreinigungsanlagen
- Grundlagen der Bemessung und Ermittlung des Abwasseranfalls und der wesentlichen Abwasserparameter
- Mechanische Abwasserreinigung (Darstellung und Bemessung)
- Biologische Abwasserreinigung (Darstellung und Bemessung)
- Schlammbehandlung (Darstellung und Bemessung)

Wasserbau und Wasserversorgung:
- Hydrologie
 - Gewässerkundliche Statistik - Pimärstatistik
o Hydromechanik
 o Gerinnehydraulik 2
 o Iterative Wasserspiegelberechnung
 o Instationärer Abfluss ? Schwall und Sunk
o Gewässerausbau ? Gewässerökologie
 o hydraulische Bemessungen für naturnahe Gewässer
 o Sohlenbauwerke
o Hochwasserschutz
 o Bemessungsgrundlagen 2
 o Hochwasserschutzsysteme
o Bauwerke der Wasserversorgung 2

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Berechnungsbeispielen, 1 SWS Laborpraktikum (virtuell)

Besonderes

Die im seminaristischen Unterricht erlangten Kenntnisse werden in einem Laborpraktikum vertieft.

Empfohlene Literaturliste

DWA A 281(2001), Bemessung von Tropfkörpern und Rotationstauchkörpern

DWA A 131 (2016), Bemessung von einstufigen Belebungsanlagen

Deininger, A. , Abwasserableitung und Abwasserreinigung, Skript zur Lehrveranstaltung, (2021)
Wittenberg: Praktische Hydrologie, Springer-Verlag 2011
Zanke, Ulrich: Hydraulik für den Wasserbau, Springer-Verlag 2013
Heinemann, Feldhaus: Hydraulik für Bauingenieure, Springer-Verlag 2003
Peter: Überfälle und Wehre - Grundlagen und Berechnungsbeispiele, Springer-Verlag, 2005
Rautenberg, Fritsch: Mutschmann/Stimmelmayr Taschenbuch der Wasserversorgung, Springer-Verlag 2014
Lecher, Lühr, Zanke: Taschenbuch der Wasserwirtschaft, Springer-Verlag 2000
DVGW-Merkblätter zur Wasserversorgung
DWA-Merkblätter zum Wasserbau und zur Hydraulik
B-26 VERKEHRSWEGEBAU I

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Bernhard Bösl</td>
</tr>
</tbody>
</table>
| Kursnummer und Kursname | B6206 Verkehrswegebau I.1
| | B7202 Verkehrswegebau I.2 |
| Lehrende | Prof. Dr. Bernhard Bösl |
| Semester | 6, 7 |
| Dauer des Moduls | 2 Semester |
| Häufigkeit des Moduls | jährlich |
| Art der Lehrveranstaltungen | Pflichtfach |
| Niveau | Bachelor |
| SWS | 6 |
| ECTS | 6 |
| Workload | Präsenzzeit: 90 Stunden
| | Selbststudium: 90 Stunden
| | Gesamt: 180 Stunden |
| Prüfungsarten | schr. P. 90 Min. |
| Dauer der Modulprüfung | 90 Min. |
| Gewichtung der Note | 6/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Kenntnisse:

- Planung und Entwurf von Autobahnen einschließlich Knotenpunkten,
- Straßenbau und Bauweisen des Straßenbaus einschließlich der standardisierten Dimensionierung,
- Qualität von Streckenabschnitten bei Landstraßen,
- Linienführung und Weichen im Bahnbau und
- Erdbau und Oberbau von Bahnanlagen.

Fertigkeiten: Die Studierenden sollen

- Entwurf, Bau und Betrieb von Straßenanlagen selbständig planen und entwickeln können,
- Infrastrukturmaßnahmen im Straßen- und Schienenverkehrsnetz funktional und umweltgerecht erarbeiten können,
- Entwürfe im Straßen- und Schienenverkehr erstellen und
die Qualität von Landstraßen berechnen können.

Kompetenzen: Die Studierenden sollen

- bei Planungen und im Betrieb von Straßen- und Schienenverkehrsanlagen kreativ mitarbeiten können,
- Planungsziele im interdisziplinären Fachkontext gemeinsam entwickeln können,
- Planinhalte von Straßen- und Schienenverkehrsanlagen mit anderen Fachleuten erörtern können und
- bei Zielkonflikten Lösungsmöglichkeiten entwickeln können.

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlage für Verkehrswegebau II

Zugangs- bzw. empfohlene Voraussetzungen

Verkehrswesen

Inhalt

Die Studierenden erwerben Kenntnisse zu folgenden Inhalten:

Straßenbau:
- Autobahnen Linienführung und Knotenpunkte,
- Erdbau und Oberbau von Straßenverkehrsanlagen,
- Entwässerung von Straßenverkehrsanlagen und
- Qualität von Strecken außerorts.

Bahnbau:
- Querschnittsgestaltung von Bahnanlagen,
- Linienführung von Bahnanlagen,
- Weichen und Kreuzungen und
- Grundlagen zum Erdbau und zum Oberbau von Bahnanlagen.

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Übungen
Empfohlene Literaturliste

Bracher, Bösl: Straßenplanung, Bundesanzeiger Verlag, Köln

H. Natzschka, Straßenbau Entwurf und Bautechnik, B.G. Teubner Verlag, Stuttgart

Velske, Mentlein, Eymann: Straßenbau Straßenbautechnik, Werner Verlag. Köln

Matthews V.: Bahnbau, Teubner Verlag

Vorlesungsskript Verkehrswegebau I
B-27 VERTIEFUNG BAUINGENIEURWESEN - PROJEKTSTUDIUM NACH WAHL

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Florian Neuner</td>
</tr>
</tbody>
</table>
| Kursnummer und Kursname | B6207 Baumanagement 1, B7203 Baumanagement 2
B6208 Umwelt und Infrastruktur 1, B7204 Umwelt und Infrastruktur 2
B6209 Konstruktiver Ingenieurbau I und II, B7205 Ausgewählte Kapitel des Konstruktiven Ingenieurbau |
| Lehrende | Prof. Dr. Andrea Deininger
Prof. Dr. Gerd Maurer
Prof. Dr. Florian Neuner |
| Semester | 6, 7 |
| Dauer des Moduls | 2 Semester |
| Häufigkeit des Moduls | jährlich |
| Art der Lehrveranstaltungen | Kern- / Wahlpflichtfach |
| Niveau | Bachelor |
| SWS | 10 |
| ECTS | 12 |
| Workload | Präsenzzeit: 150 Stunden
Selbststudium: 210 Stunden
Gesamt: 360 Stunden |
| Prüfungsarten | Endnotenbildende PStA, schriftl. Prüf. |
| Gewichtung der Note | 12/210 |
| Unterrichts-/Lehrsprache | Deutsch |

Qualifikationsziele des Moduls

Baumanagement:

Kenntnisse
Projektspezifischer Ausbau der Kenntnisse im Bereich des Baumanagements und seines interdisziplinären Umfeldes durch eigene und fremde seminaristische Beiträge, Dozentenvorträge und Diskussion.

Fertigkeiten
Entwickeln kreativer Lösungen für komplexe Aufgabenstellungen in einem interdisziplinären Kontext:

- Effektive Projektorganisation
o Optimaler Ablaufplan
o Kostenkontrolle
o Nachtragsmanagement
o Lösung von Konflikten

Kompetenzen
Die Studierenden sollen befähigt werden, eigenständig in interdisziplinärer Teamarbeit anstehende Aufgaben und Probleme bei der Abwicklung von Bauvorhaben zu bewältigen.

Umwelt und Infrastruktur:

Kenntnisse:
- Datenerhebung mit Befragungen (Auftraggeber)
- Positionierungsstudien
- Begehungen
- Recherche
- Planung allgemein
- Kalkulation
- Terminplanung

Fertigkeiten:
- Anwendung o.g. Kenntnisse
- Beurteilen von Fragestellungen der Umwelt und Nachhaltigkeit
- Bemessen von Anlagen zum Umweltschutz und zur Nachhaltigkeit
- Entwickeln und Durchführen von Projekten

Kompetenzen:
- selbständige Datenauswertungsmethoden
- verantwortungsvolle Festlegung von Auslegungsgrößen
- eigenständige Bemessungen/Berechnungen
- kreative Umsetzung in Berichte
Befähigung der Präsentation der Daten

Konstruktiver Ingenieurbau:

Kenntnisse
Projektorientierter, punktualer Ausbau der Kenntnisse im Bereich des Konstruktiven Ingenieurbaus und seines interdisziplinären Umfeldes durch eigene und fremde seminaristische Beiträge, Dozentenvorträge und Diskussion.

Fertigkeiten
Entwickeln kreativer Lösungen für komplexe Aufgabenstellungen in einem interdisziplinären Kontext:

- Recherchieren
- Entwerfen
- Konstruieren
- Verifizieren
- Vordimensionieren
- Modellieren (3D-CAD, FEM, exemplarisch auch BIM Anwendungen)
- Bemessen
- Kalkulieren
- Präsentieren

Kompetenzen
Im Fokus der Vertiefungsrichtung Konstruktiver Ingenieurbau steht der Ausbau der Kompetenzen der Studierenden. Sie sollen befähigt werden, eigenständig, verantwortlich und interdisziplinär im Umfeld des Konstruktiven Ingenieurbaus agieren zu können. Sie sind befähigt

- zur Anwendung ingenieurwissenschaftlicher Konzepte auf komplexe Anforderungskontexte,
- zu ingenieurwissenschaftlicher Analyse und Reflexion,
- zur Erschaffung und Gestaltung neuer bzw. innovativer Konzepte und Problemlösungen,
- zur Kommunikation von Wissensbeständen, Konzepten und Methoden,
- zu Selbstregulation und Reflexion des eigenen problemlösungs- und erkenntnisgeleiteten Handelns.
Verwendbarkeit in diesem und in anderen Studiengängen

Bachelorarbeit, Masterstudium

Zugangs- bzw. empfohlene Voraussetzungen

Die Vertiefung "Baumanagement" wendet die Kenntnisse aus den Modulen Baubetrieb I und II in einem durchgängigen Praxisprojekt an.

Die Vertiefung "Umwelt und Nachhaltigkeit" wendet die bisher im Studium erworbenen Kenntnisse in einem durchgängigen Praxisprojekt an.

v.a. Verkehrswegbau, Verkehrswesen, Wasserwirtschaft I und Wasserwirtschaft II

Konstruktiver Ingenieurbau: Sämtliche Fächer der Semester 1 bis 4, vor allem mindestens befriedigende Leistungen in den Disziplinen Statik, Massivbau, Geotechnik und Holzbau

Inhalt

Baumanagement 1 (B6207) und Baumanagement 2 (B7203):

6. Semester: 5 SWS; 7. Semester: 5 SWS; Gesamt-ECTS: 12
Das Projektstudium schließt mit einer Prüfungsstudienarbeit ab.

- Chancen und Risiken von ausgewählten Bauvorhaben
- Der Angebotsprozess
- Der optimale Bauablaufplan
- Vergütung von Änderungen und Abweichungen
- Lösung von Konflikten

Umwelt und Infrastruktur 1 (B6208) und Umwelt und Infrastruktur 2 (B7204):

6. Semester: 5 SWS; 7. Semester: 5 SWS; Gesamt-ECTS: 12
Das Projektstudium schließt mit einer Prüfungsstudienarbeit ab.

Inhalt des Moduls sind aktuelle fachspezifische Themen und Fragestellungen aus allgemeinen Umweltaspekten und Nachhaltigkeitsthemen, deren praxisorientierte Einordnung sowie die Einübung in die berufliche Praxis. Die Studierenden verfügen über die Fähigkeit zum selbstständigen, vertieften Arbeiten in den genannten Fachgebieten unter Nutzung selbst zu recherchierender Literatur und anderer Quellen. Sie sind in der Lage, eine größere technisch-wissenschaftliche Aufgabenstellung des Fachgebiets unter Anwendung wissenschaftlicher Methoden und zeitgemäßer
Werkzeuge zu bearbeiten und zu lösen und darüber einen technisch-wissenschaftlichen Bericht zu erstellen. Sie sind in der Lage, wissenschaftliche Vorträge unterschiedlicher Länge zu erarbeiten, inhaltlich zu dokumentieren und darzubieten. Weiterhin sind sie in der Lage, ihr erworbenes Wissen praxisorientiert einzuordnen.

- Vernetzung, Ausbau und Vertiefung der während des Studiums erworbenen Kenntnisse
- Erfahrung bei der Bewältigung praktischer Aufgabenstellungen
- Stärkung der Darstellungs- und Überzeugungsfähigkeit bei der Präsentation eigener Leistungen Befähigung zur interdisziplinären Zusammenarbeit
- Erweiterung der Kompetenzen zur Teamarbeit
- Vertiefung der Fähigkeiten zur selbstständigen Lösung komplexer Aufgabenstellungen

Konstruktiver Ingenieurbau (B6209) und Ausgewählte Kapitel aus dem konstruktiven Ingenieurbau (B7205):
Besonderheit: Projektstudium und Vorlesungsteil mit eigener schriftlicher Teilprüfung am Ende des 7. Semesters

Interdisziplinäres Projekt:
- entwerfen
- konstruieren
- bemessen
- kalkulieren
- präsentieren

Das Projektstudium schließt mit einer Prüfungsstudienarbeit ab.

und zusätzlich: Vorlesung Ausgewählte Kapitel aus dem Konstruktiven Ingenieurbau:
- Konstruktionselemente im Ingenieurbau
- Flächentragwerke
- Seilkonstruktionen
- Tragwerke mit elastischen Bettungen
Spannungszustände und Bruchkriterien
Einblicke in die Methode der Finiten Elemente
u.v.m.

6. Semester: 2 SWS; 7. Semester: 2 SWS
Die Vorlesung schließt mit einer schriftlichen Prüfung (90 Min) ab.

Lehr- und Lernmethoden

Baumanagement: Seminaristischer Unterricht, Übungen

Umwelt und Nachhaltigkeit: Projektarbeit im Team, Übungen, Präsentationen, seminaristischer Unterricht

Besonderes

Dual Studierende können die Prüfungsstudienarbeit in / mit ihrem Unternehmen zu einem Thema aus der Unternehmenspraxis verfassen.

Empfohlene Literaturliste

Baumanagement:

Vorlesungsmanuskript

VOB Teile A, B und C

Umwelt und Infrastruktur:

Vorlesungsskripte

Literatur je nach Projekt und Themenschwerpunkt
Konstruktiver Ingenieurbau:

Prof. Dr.-Ing. Jörg Lange: Aussteifung von Gebäuden, TU Darmstadt 2009

Werkle, Horst: Finite Elemente in der Baustatik, Vieweg 2008

Läpple, V.: Einführung in die Festigkeitslehre, Vieweg und Teubner 2011

Vorlesungsskripte
B-28 FACHWISSENSCHAFTLICHES WAHLPFlichtFACH BIW

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Bernhard Bösl</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B6110 Fachwissenschaftliches Wahlpflichtfach Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Lehrbeauftragter BIW</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>FWP</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>PStA, schr. P. 90 Min.</td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>90 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>5/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Je nach gewähltem Fachgebiet haben die Studierenden nach dem Absolvieren der Kurse folgende Lernziele erreicht:

- Einblick in Themen und Methodik aktueller Fach- und Spezialgebiete
- Vertiefte und erweiterte Kenntnisse ihres Fachgebiets, spezieller Anwendungen, Regelwerke oder Anforderungen
- Fähigkeit zur Beurteilung interdisziplinarer Themenstellungen
- Fähigkeit zum Anwenden geeigneter und teamorientierter Lösungsverfahren
- Erwerb und Vertiefung fächerübergreifender Kompetenzen
- Erwerb und Vertiefung von Schlüsselkompetenzen
Verwendbarkeit in diesem und in anderen Studiengängen

Für Projektarbeiten, Bachelorarbeit oder Masterstudium.

Zugangs- bzw. empfohlene Voraussetzungen

Zugangsvoraussetzungen variieren je Angebot und ergeben sich aus der Studien- und Prüfungsordnung sowie aus dem Studienplan.

Die einzelnen empfohlenen Voraussetzungen werden rechtzeitig zur Wahl des FWP-Faches über die entsprechenden Kursbeschreibungen auf der Online-Lernplattform der Fakultät veröffentlicht.

Inhalt

Die tatsächlich angebotenen Lehrveranstaltungen werden im Studienplan und Vorlesungsplan jeweils festgelegt. Mögliche FWP-Angebote sind:

- Elektrotechnik in Gebäuden
- Mauerwerksbau
- Fertigteilbau
- Verhandlungstechnik in der Bauabwicklung
- Unternehmensgründung
- BIM-Modellierung
- öffentlich-rechtliche Verfahren
- Praktische Programmierung
- Rechtliche Grundlagen (z.B. Baurecht, Grundstücksrecht, Versteigerungsrecht)
- Altlasten und Entsorgung
- Schadstoffe

Prüfungsart je nach FWP-Angebot entweder Prüfungsstudienarbeit oder schriftliche Prüfung.

Die Angebote sowie Inhalte und jeweiligen Prüfungsarten der einzelnen Fächer werden rechtzeitig zur Wahl des FWP-Faches über die entsprechenden Kursbeschreibungen auf der Online-Lernplattform der Fakultät veröffentlicht.

Lehr- und Lernmethoden
Ergeben sich aus dem Fachgebiet.

Die Lehrmethoden der einzelnen Fächer werden rechtzeitig zur Wahl des FWP-Faches über die entsprechenden Kursbeschreibungen auf der Online-Lernplattform der Fakultät veröffentlicht.

Besonderes

Dual Studierende absolvieren im Rahmen des FWP-Angebots einen verpflichtenden Praxistransferworkshop für 5 ECTS (entspricht insgesamt über die Semester verteilt ca. 150 Stunden Arbeitsaufwand):

2. Die dual Studierenden erstellen am Ende jeder Praxisphase (Semesterferien und Praktikum) einen 1- bis 2-seitigen Bericht mit folgenden Themenschwerpunkten:
 - Vergleich Theorie und Praxis,
 - Veränderungsbedürftigkeit der Praxis,
 - Veränderungsfähigkeit der Praxis

Empfohlene Literaturliste

Ergeben sich aus dem Fachgebiet und werden im Rahmen der Lehrveranstaltung an die Studierenden kommuniziert.
B-29 VORBEUGENDER BAULICHER BRANDSCHUTZ

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Gerd Maurer</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B7106 Vorbeugender baulicher Brandschutz</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Kurt Häberl</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>schr. P. 90 Min.</td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>90 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>5/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Kenntnisse:

- Grundzüge des Entstehens und des Verlaufs, sowie die Folgen eines Brandes
- Grundlagen und Fachbegriffe im Brandschutz
- Eigenschaften der Baustoffe und der aus ihnen gefertigten Bauteile
- Normen für die Bauprodukte und die Brandprüfungen

Fertigkeiten:

Die Studierenden sollen anhand von Praxisbeispielen von Sonderbauten, wie Büro- und Verwaltungsgebäude, Hotelanlagen, Flughäfen, Hochhäuser oder Krankenhäuser, die zugrunde gelegten Brandschutzkonzepte sicher in bauliche Brandschutzlösungen (Horizontal- wie Vertikal-Bauteile) planen, ausschreiben bzw. ausführen können.

Kompetenzen:

Die Studierenden sind in der Lage, einzelne Bauteile für den Brandfall zu bemessen, können Bauteile aufgrund ihrer brandschutztechnischen und ihrer tragwerksrelevanten Eigenschaften richtig einschätzen und für die Verwendung in einem Gebäude vorsehen. Sie sind in der Lage, die brandschutztechnischen Zielsetzungen zu bearbeiten:
Sicherstellung der Tragfähigkeit
Sicherstellung der Rettung und Evakuierung von Gebäuden
Verhinderung der Brandentstehung, der Ausbreitung von Feuer, Gasen und Rauch

Verwendbarkeit in diesem und in anderen Studiengängen

Bausanierung und Brandschutz (Master)

Zugangs- bzw. empfohlene Voraussetzungen

keine

Inhalt

- Bauverordnungen und Vorschriften der Länder
- Regelungen der Europäischen Länder
- Brandvoraussetzungen
- Brandverhalten von Baustoffen und Bauteilen, Brandversuche
- Einflüsse auf den Brandverlauf (Brandlast, Strömungsbedingungen, Löschmaßnahmen)
- technische Brandschutzeinrichtungen
- Flucht- und Rettungswege, Grundlagen der Evakuierung
- Löschwasserversorgung und -rückhaltung
- Rauch- und Wärmeabzugsanlagen, Modellansätze zur Rauchausbreitung
- Eigenschaften von Baustoffen und Bauteilen bei Temperatureinwirkung: Stahl, Beton, Holz, Glas u.a. (physikalische Eigenschaften, Einsatzmöglichkeiten, Brandeigenschaft)
- Vorschriften und Nachweisverfahren
- Bemessungen im Beton-, Stahl-, Verbund-, Holz- und Mauerwerksbau; Brandschutz von Wänden und Decken
Lehr- und Lernmethoden

seminaristischer Unterricht, Übungen

Empfohlene Literaturliste

Schneider, Ulrich; Kolb, Thomas (2016): Ingenieurmethoden im Baulichen Brandschutz. Grundlagen, Normung, Brandsimulationen, Materialdaten und Brandsicherheit. 8., neu bearbeitete Auflage

Skriptum zur Vorlesung Brandschutz, 2019, TH Deggendorf
B-30 BAUBETRIEB II

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Gerd Maurer</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B7107 Baubetrieb II</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Gerd Maurer</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jährlich</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>schr. P. 90 Min.</td>
</tr>
<tr>
<td>Dauer der Modulprüfung</td>
<td>90 Min.</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>5/210</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Kenntnisse:

- Aufstellen einer Leistungsbeschreibung,
- Bauablaufplanung,
- Baustelleneinrichtung,
- Baupreisermittlung und Kalkulation von Sonderpositionen

Fertigkeiten:

Anwendung o.g. Kenntnisse

Kompetenzen:

- Erstellen von Ausschreibungen,
- Erstellen von Bauablaufplänen,
Erstellen eines Baustelleneinrichtungsplanes,
Durchführung von Baupreiskalkulationen.

Verwendbarkeit in diesem und in anderen Studiengängen

Baubetrieb II enthält eigenständig verwertbare Kapitel, die beispielsweise für die Vertiefung BIW oder einzelne Module im Masterstudium (z.B. Projektmanagement) weiter verwendet werden können.

u.U. zur Anfertigung der Bachelorarbeit

Zugangs- bzw. empfohlene Voraussetzungen

Baubetrieb I

Inhalt

- Beschreibung von Bauleistungen: Ablauf der Angebotsbearbeitung, Ausschreibung einer Baugrube, Verwendung von Standardtexten (StLB Bau oder gleichwertige Texte), Übung "Ausschreibung einer Winkelstützmauer"
- IT-Workshop : LV-Struktur nach GAEB, Vorbemerkungen, Positionstexte, Zugriff auf Standardtexte, Erstellen Anfrage-LV, Preisspiegel, Vergabe-LV
- Ablaufplanung: Zweck/Arten von Bauzeitenplänen, Balken- und Zeit-Weg-Diagramme, Optimierung, Grob- und Feinplanung, Ermittlung Ressourcenbedarf, LEAN Management. Last-Planner-System (R)
- Baustelleneinrichtung: Elemente, Beispiele, Zuordnung der Elemente,
- Durchführung von Baupreiskalkulationen einschließlich der Kalkulation von Sonderpositionen

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen

Empfohlene Literaturliste

- Vorlesungsmanuskript
- "Grundlagen der Baubetriebslehre 1", Baubetriebswirtschaft, 2. Auflage, Berner, Kochendörfer, Schach
o "VOB / BGB / HOAI", Beck-Texte im dtv
B-31 BACHELORARBEIT

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>B-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Bernhard Bösl</td>
</tr>
<tr>
<td>Kursnummer und Kursname</td>
<td>B7108 Bachelorarbeit</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Häufigkeit des Moduls</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Art der Lehrveranstaltungen</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Niveau</td>
<td>Modulniveau Bachelor</td>
</tr>
<tr>
<td>SWS</td>
<td>0</td>
</tr>
<tr>
<td>ECTS</td>
<td>10</td>
</tr>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 0 Stunden Selbststudium: 300 Stunden Gesamt: 300 Stunden</td>
</tr>
<tr>
<td>Prüfungsarten</td>
<td>Bachelorarbeit</td>
</tr>
<tr>
<td>Gewichtung der Note</td>
<td>10/210 (2xgewichtet)</td>
</tr>
<tr>
<td>Unterrichts-/Lehrsprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Qualifikationsziele des Moduls

Kenntnisse: In dem gewählten Themenbereich sind die Kenntnisse aus dem Studium zu reproduzieren und durch Eigenstudium zu ergänzen.

Fertigkeiten: Selbständiges Erarbeiten und Darstellen einer Themenstellung unter Verwendung der im Studium erworbenen Kenntnisse und Übertragung und Weiterverarbeitung dieser Kenntnisse.

Kompetenzen: Kreative Bearbeitung einer technisch-wissenschaftlichen Fragestellung im interdisziplinären Fachkontext.

Verwendbarkeit in diesem und in anderen Studiengängen

Durch die Bachelorarbeit wird das Erreichen des Studienziels nachgewiesen.

Zugangs- bzw. empfohlene Voraussetzungen

Für die Bachelorarbeit kann sich anmelden, wer alle Module des ersten bis vierten Studienplansemesters und das praktische Studiensemester erfolgreich abgelegt hat.

Inhalt

- Anwendung wissenschaftlicher Methoden
Wissenschaftliche Dokumentation
Interdisziplinäres Arbeiten
Schnittstellenkompetenz

Lehr- und Lernmethoden

Eigenständiges Erarbeiten des Themas. Impulsgebung durch den Dozenten.

Besonderes

Dual Studierende wählen das Thema in Abstimmung mit der Firma und bearbeiten diese zumindest in Teilen in und mit dem Unternehmen.

Empfohlene Literaturliste

Ergeben sich aus dem Fachgebiet.

wissenschaftliches Arbeiten: Kompaktwissen Wissenschaftliches Arbeiten, Eine Anleitung zu Techniken und Schriftform; Reclam Verlag