Module Guide
Master
Global Public Health
Faculty European Campus Rottal-Inn
Examination regulations 15.03.2021
<table>
<thead>
<tr>
<th>Study Plan</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPH-1 ESSENTIALS OF GLOBAL PUBLIC HEALTH</td>
<td>3</td>
</tr>
<tr>
<td>GPH-2 DIGITAL HEALTH</td>
<td>5</td>
</tr>
<tr>
<td>GPH-3 SUSTAINABLE HEALTH ECONOMY</td>
<td>8</td>
</tr>
<tr>
<td>GPH-4 ELECTIVE: GENDER EQUALITY IN GLOBAL PUBLIC HEALTH</td>
<td>10</td>
</tr>
<tr>
<td>GPH-5 ELECTIVE: COLLABORATIVE HEALTH SYSTEMS</td>
<td>12</td>
</tr>
<tr>
<td>GPH-6 ELECTIVE: HEALTH FORECAST – FUTURE CAUSES OF DEATH</td>
<td>14</td>
</tr>
<tr>
<td>GPH-7 ELECTIVE: MANAGED CARE</td>
<td>17</td>
</tr>
<tr>
<td>GPH-8 ELECTIVE: LIFE SCIENCE FOR PUBLIC HEALTH</td>
<td>19</td>
</tr>
<tr>
<td>GPH-9 ELECTIVE: TECHNOLOGY FOR GLOBAL PUBLIC HEALTH</td>
<td>21</td>
</tr>
<tr>
<td>GPH-10 GLOBAL PUBLIC HEALTH LAW AND ETHICS</td>
<td>23</td>
</tr>
<tr>
<td>GPH-11 EPIDEMIOLOGY AND HEALTH DATA ANALYTICS</td>
<td>25</td>
</tr>
<tr>
<td>GPH-12 UNIVERSAL HEALTH COVERAGE</td>
<td>27</td>
</tr>
<tr>
<td>GPH-13 ELECTIVE: KNOWLEDGE BASED SYSTEMS</td>
<td>29</td>
</tr>
<tr>
<td>GPH-14: ELECTIVE: HEALTH ECONOMY &amp; MANAGEMENT</td>
<td>32</td>
</tr>
<tr>
<td>GPH-15: ELECTIVE: MedTech: COGNITIVE PROCESSES AND AI TECHNOLOGY</td>
<td>34</td>
</tr>
<tr>
<td>GPH-16: ELECTIVE: SYNERGIES BETWEEN EDUCATION AND HEALTH</td>
<td>36</td>
</tr>
<tr>
<td>GPH-17 HCI and Accessibility</td>
<td>38</td>
</tr>
<tr>
<td>GPH-18 MASTER MODULE</td>
<td>40</td>
</tr>
</tbody>
</table>
## Study Plan

### Global Public Health – Programme Structure

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Semester 3</strong></td>
<td><strong>GPH-18</strong></td>
<td>Master Module</td>
<td>30</td>
</tr>
<tr>
<td><strong>Semester 2</strong></td>
<td><strong>GPH-10</strong></td>
<td>Global Public Health Law and Ethics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td><strong>GPH-11</strong></td>
<td>Epidemiology and Health Data Analytics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td><strong>GPH-12</strong></td>
<td>Universal Health Coverage</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Choose 3 Electives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-13</strong></td>
<td>Knowledge Based Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-14</strong></td>
<td>Health Economy &amp; Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-15</strong></td>
<td>MedTech: Cognitive Processes and AI Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-16</strong></td>
<td>Synergies between Education &amp; Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-17</strong></td>
<td>HCI and Accessibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-4</strong></td>
<td>Gender Equality in Global Public Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-5</strong></td>
<td>Collaborative Health Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>5 ECTS</strong></td>
<td><strong>5 ECTS</strong></td>
<td><strong>5 ECTS</strong></td>
</tr>
<tr>
<td><strong>Semester 1</strong></td>
<td><strong>GPH-1</strong></td>
<td>Essentials of Global Public Health</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td><strong>GPH-2</strong></td>
<td>Digital Health</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td><strong>GPH-3</strong></td>
<td>Sustainable Health Economy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Choose 3 Electives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-4</strong></td>
<td>Gender Equality in Global Public Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-5</strong></td>
<td>Collaborative Health Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-6</strong></td>
<td>Health Forecast – Future Causes of Death</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-7</strong></td>
<td>Managed Care</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-8</strong></td>
<td>Life Science for Public Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>GPH-9</strong></td>
<td>Technology for Global Public Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>5 ECTS</strong></td>
<td><strong>5 ECTS</strong></td>
<td><strong>5 ECTS</strong></td>
</tr>
</tbody>
</table>
GPH-1 ESSENTIALS OF GLOBAL PUBLIC HEALTH

<table>
<thead>
<tr>
<th>Module code</th>
<th>GPH-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Sabine Dittrich</td>
</tr>
<tr>
<td>Course number and name</td>
<td>GPH-01 Essentials of Global Public Health</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Sabine Dittrich</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>yearly</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>Postgraduate – MSc</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours</td>
</tr>
<tr>
<td></td>
<td>self-study: 90 hours</td>
</tr>
<tr>
<td></td>
<td>Total: 150 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>Written Examination (schrP)</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Weight</td>
<td>5/90</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

Module Objective
Introduce the students to global public health structures and challenges and introduce a range of stakeholders in the global public health space. The goal of this course is to give a broad understanding of the bigger picture of global health and how a variety of actors at regional, national, and international level are aiming to establish sustainable solutions for current and future health challenges.

Professional competence
Students
- Understand the structures of public health from local to international level
- Understand the issues ranging from traditional disease focus areas (eg: “the big three”: malaria, TB, HIV; Neglected tropical diseases) to understand emerging areas of focus (eg. AMR, climate change, non-communicable diseases)
- Learn about the interconnected nature of health challenges and solutions
- Understand the different types of actors and their roles within the global public health space from national health system players, academics ranging to international stakeholders and donors

Methodological competence
Students
- Will be able to analyse the different roles and interactions of national and international actors within a specific health area
- Will learn to review data and literature on a health topic and summarize in a concise manner
- Will be able to understand global health relevant terminology and are able to critically assess challenges and solutions

Social and personal competence
Students, in a team, engage in an open and respectful discussion of lived and learned experiences in the space of global public health and will learn from each other as well as the lecturer and guest lecturers. Further the group work will mimic the real-life working environment in a global health organisation which has to harness different cultural and technical backgrounds to successfully complete a task. Overcoming the corresponding challenges linked to communication styles, backgrounds and knowledge is a critical learning outcome for anybody aiming to embark on a career in the international public health space.

Applicability in this and other programs
This course is relevant to all health-related courses and all students interested to explore and translate their study area to a global context.

Learning Content
1. Overview of key health topics of the past, present, and future and why we (as a GPH community) care
   a. "the big 3": Malaria, TB, HIV
   b. Neglected tropical diseases (NTDs)
   c. Antimicrobial Resistance
   d. Non-communicable diseases (NCDs)
   e. Other emerging topics like surgical care, mental health
   f. Climate Change and Health
2. Explore the different health topics through a dual lens of public and individual health and explore how one links to the other
3. Historical context and how the past influences current actions and inactions particularly in view of the push to "decolonizing global health".
4. Identify different actors in the global public health space at all levels (locally and internationally) and link them to specific tasks and mandates:
   a. Local health providers
   b. Non-governmental organisations at national and international level
   c. Humanitarian organisations
   d. International actors (eg. UN, Red Cross....)
   e. Academic actors

Teaching Methods
Lectures, learning tasks, web-discussions/presentations, independent studies and seminars, case study exploring a key health challenge and developing a project with different stakeholders.

Recommended Literature
- Sign up to the World Health Organisation newsletter
GPH-2 DIGITAL HEALTH

<table>
<thead>
<tr>
<th>Module code</th>
<th>GPH-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Thomas Spittler</td>
</tr>
<tr>
<td>Course number and name</td>
<td>GPH-2 Digital Health</td>
</tr>
</tbody>
</table>
| Lecturer | Prof. Dr. Thomas Spittler  
| | Prof. Dr. Dominik Böhler |
| Semester | 1 |
| Duration of the module | 1 semester |
| Module frequency | Yearly |
| Course type | required course |
| Niveau | Postgraduate – MSc |
| Semester periods per week (SWS) | 4 |
| ECTS | 5 |
| Workload | Time of attendance: 60 hours  
| | self-study: 90 hours  
| | Total: 150 hours |
| Type of Examination | written examination (schrP) |
| Duration of Examination | 90 min. |
| Weight | 5/90 |
| Language of Instruction | English |

Module Objective

Students understand the concepts of digitalization and master the practical handling of these concepts, as well as tools and methods. The benefits, but also the risks of digitalization will be shown and discussed on the basis of various use cases. After completing the module, students will have achieved the following learning objectives:

Professional competence

Students

- understand the concept of qualified digital health as well as IT-Awareness: data security, privacy and safety methods to ensure the appropriate handling with sensitive data.
- know principles of software engineering foundations related to digital health
- are able to utilise the digital tools and have skills required to use of IoT in global public health (data gathering, analysis, anticipation, reaction)
- understand the role and increasing importance of digital public health globally and are able to identify advances that healthcare depends increasingly on intensive interventions, technological developments and expensive pharmaceuticals.
- are able to identify the digital health technologies liaison of Sustainable Development Goals (SDGs) (e.g. access to health service infrastructures, technology acceptance, ownership, and a culture of data use for decision-making)
- Can link the different digital infrastructures and solutions with their impact on climate change
- realise an (illustrative or practice) development project
- understand Digital Health IoT ecosystems and IoT data transfer from sensors to the cloud and related data-analysis.

Methodological competence
Students

- produce user-centered digital solution prototype in the health sector and carry out a project work in small groups (incl. short presentations on the as-is analysis and project report)

Social and Personal competence

Students

- are able to view their own communication situations from the meta-level and use these skills in individual and group discussions as appropriate to the situation

Applicability in this and other Programs

The module can be used in other study programs related to healthcare.

Entrance Requirements

None.

Learning Content

- Concept of Digital Health in Theory and Practice (including IoT)
- Sustainability of Digital Technologies in International Context
- Benefits and challenges related to Digital Technologies
- Digital Health, (Research and development process, versatile and multidisciplinary methods, oral/written presentations, scientific reports).
- IT-Awareness: data security, privacy and safety concepts
- Analytics and Visualisation
- Clouds
- Social and Healthcare IT systems
- IoT (Medical sensors and wearables, Mobile Phone)
- Prototyping of IT project

Teaching Methods

Lectures, learning tasks, web-discussions/presentations, Independent studies, seminars, workshops on methodology, Moodle learning environment contains materials

Recommended Literature

**Module Objective**

Students gain an overview of economic principles and issues facing the healthcare industry as well as institutions. They learn how policy can be used to address current global public health challenges and explore the complexities of the health financing systems which further allows them to present justifiable and sustainable solutions.

**Professional competence**

Students are able to

- Think economically and understand economic problems related to health care
- Apply economic analysis to health policy issues
- Understand the effects of changes in the economy on public health
- Understand the impact of institutions on health economy

**Methodological competence**

Students are able to

- Question the present way of functioning regarding the economy in health care
- Think about possible solutions for current challenges that exist and future challenges that will arise in the health economy

**Social and Personal competence**

Students

- Question ideas of their own and those of other students
- Engage in constructive criticism
- Participate in group discussions

**Applicability in this and other Programs**

The module can be used in other study programs related to healthcare.

**Entrance Requirements**

None.
Learning Content
The course will address various facets of healthcare economics such as
- Supply and demand
- Determinants of population health
- Economics of Public Health and Health Promotion
- Effect of economic growth on public health
- The role of health insurance and the law of large numbers
- The impact of involvement of various institutions
- The economic behavior of those that provide health care
- The impact of uncertainty on economic behavior
- The impact of imperfect information on economic behavior
- Health care discrimination and equality

Teaching Methods
- Lecture
- Slides, combination of static and interactive content
- Presentation recorded
- Quiz
- Literature
- External Videos

Recommended Literature

Videos
- https://www.youtube.com/watch?v=jsiCft5v2dk
  o Prof. Jonathan Gruber, Professor of Economics at MIT
- https://www.youtube.com/watch?v=LZZ2gyYSbzI
  o Greg Martin, Director of the Health Protection Surveillance Centre
Module Objective

In this module students will recognize the Sustainable Development Goals (SDG). They will identify and apply the SDGs 3 (Health), SDG 4 (Education) and 5 (Gender Equality) in details. Synergies between these SDGs will be analyzed. The importance of these three SDGs will provide a deep understanding how Gender Equality in Global Public Health can be achieved. Students will demonstrate knowledge about the significance of current research in the field of Gender Equality by writing a research paper.

After completing the module, the students will have achieved the following learning objectives:

Professional competence

Students
- Understand SDGs, especially SDG 3, 4 and 5
- Are able to recognise synergies between SDG 3,4 and 5
- Can identify the importance of SDG 3 and 4 to reach SDG 5
- Understand gender equality in different countries

Methodological competence

Students
- Discuss the importance of Gender Equality in Global Public Health
- Analyze the current situation of Gender Equality world wide
- Apply different scenarios to improve Gender Equality in Global Public Health

Social and personal competence

Students, in a team, develop joint project goals and research papers. They will be able to reflect on their working results and evaluate them.
Applicability in this and other Programs

The module can be used in other study programs related to Sustainability and Gender.

Entrance Requirements

None

Learning Content

- Gender Equality in General
- From MDGs to SDGs
- SDG3, 4 and 5 in detail
- Synergies between SDGs
- SDGs progressing worldwide
- Gender Equality in a national and international context

Teaching Methods

Lectures, learning tasks, web-discussions/presentations, independent studies, seminars, workshops on methodology, Moodle learning environment contains materials

Recommended Literature

- Millennium Development Goals (MDGs) to Sustainable Development Goals (SDGs): Addressing Unfinished Agenda and Strengthening Sustainable Development and Partnership (Dr. Sanjiv Kumar, National Health Systems Resource Centre, India)
- Positive health, education and gender equality outcomes for Myanmar youth, UNESCO
- Gender inequality and the COVID-19 crisis: A Human Development perspective, UNDP
- The Lost Girls of Covid, Bloomberg
- Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017, Lancet Prof. Rafael Lozano, Universtiy of Washington, USA
- The Policy on Gender Equality in Germany, European Parliament
- Gender Equality Policy, PAHO
- Synergies and Trade-Offs in Reaching the Sustainable Development Goals
GPH-5 ELECTIVE: COLLABORATIVE HEALTH SYSTEMS

Module code | GPH-5
Module coordination | Anna Schmaus-Klughammer
Course number and name | GPH-5 Collaborative Health Systems
Lecturer | Anna Schmaus-Klughammer
Semester | 1
Duration of the module | 1 semester
Module frequency | yearly
Course type | Elective
Niveau | Postgraduate – MSc
Semester periods per week (SWS) | 4
ECTS | 5
Workload | Time of attendance: 60 hours
self-study: 90 hours
Total: 150 hours
Type of Examination | Presentation (Präs)
Weight | 5/90
Language of Instruction | English

Module Objective

In this module students will recognize different devices and services used for Digital Collaborative Systems in Healthcare. They will identify and apply health IT in details. Students will understand the differences between hardware devices and software. They will analyze different systems and recognize their application in primary, secondary and tertiary healthcare. Students will demonstrate knowledge about the significance of current research in the field of Collaborative Systems by writing a research paper. After completing the module, the students will have achieved the following learning objectives:

Professional competence

Students
- Understand different Types of Health Information Technology
- Understand the application of different types of Health Information Technology
- understand Big Data and eHealth

Methodological competence

Students
- Discuss the importance of Collaborative Systems in Healthcare
- Analyze the different types of Health Information Technology
- Apply different devices in online scenarios

Social and Personal competence

Students, in a team, develop joint project goals and research papers. They will be able to reflect on their working results and evaluate them.

Applicability in this and other Programs

The module can be used in other study programs related to IT in healthcare and
healthcare in general.

**Entrance Requirements**

none

**Learning Content**

- Electronic Health Record (EHR)
- Personal Health Record (PHR)
- Health Information Exchange (HIE)
- Medical Interaction Platforms
- Collaboration in Healthcare across Borders
- eHealth / mHealth
- Health Technology Infrastructure
- Telemedicine
- Ambient Assisted Living
- Teletherapy
- Telemonitoring
- Foundations of Big Data
- Data Classification
- Data Analytics in eHealth

**Teaching Methods**

Online flipped classroom. Content (live lecture, recorded lecture, external videos, literature) is provided on a collaborative online platform. For each lecture a questionnaire is provided which is not mandatory yet allows students to control their knowledge.

**Recommended Literature**

- Electronic Health Records (EHR)
  Authors: Tom Seymour, Minot State University, USA Dean Frantsvog, Minot State University, USA Tod Graeber, Minot State University, USA

- The value of health information exchange
  Authors: Joshua Richardson, Erika L. Abramson, Rainu Kaushal

- A Distributed Collaborative Platform for Personal.pdf
  Authors: Ahmed M. Elmisery, Seungmin Rho, and Dmitri Botvich

- Telemedicine across borders: A systematic review of factors that hinder or support implementation
  Authors: Helena Legido-Quigley, Ain Aaviksoo, Josip Car, Martin Mckee


Module Objective

Health and healthcare are existing in ever changing context. Many diseases and conditions that have been the major health problems two centuries ago are either non-significant or sometimes not even existing today. The process is continuing, and future generations of healthcare and public health specialists are likely to face new challenges, such as emerging or re-emerging infections (similar to COVID-19), or consequences of significantly changing lifestyle. This module aims to introduce the students to the changing landscape of the burden of disease in the global context, including the population groups most affected by different current and upcoming disease burden, the risk factors, and the key measures to predict and address the future burden of disease. After completing the module the students will have achieved the following learning objectives:

**Professional competences:**

Students
- Understand health and healthcare in a broader dynamic context;
- Acquire deepened knowledge of the determinants of health and the current and upcoming risk factors for conditions of importance to international health systems;
- know the most important components of healthcare delivery, of the structure and functioning of healthcare systems;
- understand important current and future health conditions;
- know the forecast and prognostication techniques with regard to the future health problems;
- know Digital Health approaches, applications and tools to address the future burden of disease.

**Methodological expertise**

Students
• Discuss with confidence the burden of disease in various regions of the world, how it varies both within and across countries, and how the disease burden will be changing in the upcoming decades;
• Analyze key challenges that are likely to arise in the coming decades in addressing the health in different high-, middle-, and low-income countries;
• Apply Digital Health tools to analyze and forecast the health trends.

Social and Personal competences:
Students
• Are able to analyze the structure and understand the meaning of commonly used international and global health concepts;
• Present a potential future health issue in a particular country or area in the world, or a global health issue, in a comprehensive way.
• Work in small groups discussing and presenting various healthcare management issues and challenges in different countries.

Applicability in this and other Programs
The module can be used in other study programs related to healthcare.

Entrance Requirements
No special requirements.

Learning Content

1. Health Determinants, Measurements and Trends: the determinants of health; the demographic and epidemiologic transitions; health indicators and key terms related to measuring health status and the burden of disease; concepts of health-adjusted life expectancy (HALE) and disability-adjusted life years (DALYs), and the Global Burden of Disease (GBD); current leading causes of death and the burden of disease in low-, middle-, and high-income countries, and their key risk factors; dynamic of the disease burden, and upcoming and future changes in GBD.

2. Health, Education, Poverty and the Economy: the links between health and education; connections between health, productivity, and earnings; key relationships between health, the costs of illness, and the impact of health expenditure on poverty; evolving connections between health and equity; relationships between expenditure on health and health outcomes; two-way relationship between health and development; changing global perspectives and potential future challenges.

3. Communicable Disease: the current burden of communicable diseases; the determinants of selected communicable diseases, including emerging and reemerging infectious diseases; key concepts concerning the prevention, transmission, and treatment of those diseases; the costs and consequences of communicable diseases of importance; case studies of successful interventions against communicable diseases; key challenges to the future prevention and control of these diseases; lessons learned from the COVID-19 pandemic; potential future infections and pandemics of global reach.

4. Non-Communicable Diseases: the burden of non-communicable diseases worldwide; the most important risk factors for the burden of non-communicable disease; the costs and consequences of non-communicable diseases, tobacco use, alcohol use disorders, mental health disorders, and others; the measures that can be taken to address the burden of non-communicable diseases in cost-effective ways; case studies of successful interventions against non-communicable diseases; upcoming and future non-communicable diseases; key challenges to the future prevention and control of these diseases.

5. Unintentional Injuries: the most important types of unintentional injuries; the
burden of disease related to those injuries; how that burden varies by age, sex, region, and type of injury; the costs and consequences of unintentional injuries; the measures that can be taken to address the burden of unintentional injuries in cost-effective ways; case studies of preventing unintentional injuries; upcoming trends and problems in unintentional injuries; key challenges to the future prevention and control of unintentional injuries.

6. **Environmental Health**: the importance of environmental health; key concepts; key environmental health burdens; the burden of environmentally related diseases; the costs and consequences of key environmental health problems reducing the burden of disease; case studies; upcoming and future environmental problems; key challenges to the future of the environmental health.

7. **Nutrition and Global Health**: the importance of nutrition; definitions and key terms; data on nutrition; the determinants of nutritional status; gauging nutritional status; key nutritional needs; overweight and obesity; nutritional needs throughout the life course; the changing nutritional state of the world; nutrition, health, and economic development case studies; addressing future nutrition challenges.

8. **Women’s Health**: the importance of women’s health; key definitions; the determinants of women’s health; the burden of health conditions for females; leading causes of death and DALYs, males and females compared; selected health burdens for females; the costs and consequences of women’s health problems; case studies; addressing future challenges; further measures to enhance the health of women.

9. **Child and Adolescent Health**: the importance of child and adolescent health; key terms; adolescence and young adulthood as transitional and critical periods; mortality and the burden of disease; risk factors for neonatal, infant, child and adolescent deaths; the costs and consequences of child and adolescent morbidity and mortality; immunization: a best buy in global health; case studies; addressing key challenges and future trends in child and adolescent health.

10. **Key messages and takeaways**: the future of health and healthcare, and how Digital Health technologies might be capable of addressing the future challenges.

**Teaching Methods**

Combination of lectures, seminars, case studies, class discussions, exercises, group work, student presentations, and lab training.

**Remarks**

Guest lecture by an external expert (optional)

**Recommended Literature**

- IHME Vizhub GBD Compare https://vizhub.healthdata.org/gbd-compare/;
- WHO Global Health Observatory https://www.who.int/data/gho.
**GPH-7 ELECTIVE: MANAGED CARE**

<table>
<thead>
<tr>
<th>Module code</th>
<th>GPH-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Dr. Roland Wiest</td>
</tr>
<tr>
<td>Course number and name</td>
<td>GPH-7 Managed Care</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Roland Wiest</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>yearly</td>
</tr>
<tr>
<td>Course type</td>
<td>Elective</td>
</tr>
<tr>
<td>Niveau</td>
<td>Postgraduate – MSc</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
</tbody>
</table>
| Workload | Time of attendance: 60 hours  
self-study: 90 hours  
Total: 150 hours |
| Type of Examination | written examination (schrP) |
| Duration of Examination | 90 minutes |
| Weight | 5/90 |
| Language of Instruction | English |

**Module Objective**

The “Managed Care” module is designed to give students an insight into the basics of healthcare systems. Managed care was developed as a health economic management control system in USA and has since been applied to other healthcare systems. Implementation goals include more cost-effective care, as well as improvement in quality and in interface management. Given the structural inefficiencies in the German healthcare sector, students also recognise the opportunities and potentials of individual managed care instruments, such as integrated medical care, structural contracts, selective contracting, doctors’ networks, ambulatory healthcare centres and DMP. Upon completion of the module, students should be able to distinguish between different managed care instruments, to evaluate them economically, and to provide consultation to companies in the healthcare industry.

After completing the module the students will have achieved the following learning objectives:

**Professional competences**

Students
- know the framework conditions of the application of managed care and can classify its various characteristics
- know the basics of managed care instruments
- are familiar with the assessment and classification systems of managed care.

**Methodological expertise:**

Students
- can analyse the various managed care instruments and perform sample calculations.

**Social and Personal competences:**
Students can compare the legal, economic and ethical issues related to the application of managed care and discuss the application critically. Approaches and solutions are developed and discussed in the group.

**Applicability in this and other Programs**

The module can be used in other study programs related to healthcare.

**Entrance Requirements**

None

**Learning Content**

1. Historical development of managed care
2. Selective contracting
3. Gatekeeping
4. Utilisation review and management
5. Disease management
6. Case management
7. Guidelines
8. Remuneration systems
9. Quality management
10. HMO (Health Management Organisations) in different countries
11. Legal framework conditions for new forms of care
12. Assessment methods
13. Case study

**Teaching Methods**

Combination of lectures, seminars, case studies, class discussions, exercises, group work, student presentations, and lab training.

**Recommended Literature**

Module Objective

The objective of this course is to understand basic life science principles and their application in a public health context. The basics of molecular biology are critical to understand many of the public health tools that are used and discussed daily in public health practice. Further, basic life science knowledge is important to understand vaccine or diagnostic innovations, antimicrobial resistance as well as serological or molecular surveillance data. A basic understanding of the science will allow more critical review of data as well as a more informed and targeted use of tools and concepts.

Professional competence

Students
- gain a basic understanding of the cell and its genetic make-up and how it is used in screening activities or can be exploited for diagnostic, epidemiology/surveillance or the monitoring of risk factors or mutations
- gain a basic understanding of immunology and the human immune system and how it is exploited for vaccines, diagnostic or epidemiology
- understand the difference between different disease-causing agents and what the different properties mean for the monitoring of presence or absence of the infection and how immunological or molecular methods are used for diagnostic, surveillance or vector control in a public health context

Methodology competence

Students
- are able to understand the basics of molecular biology and immunology
- are able to critically review scientific data linked to diagnostic (molecular and immunological)
- are able to identify the most appropriate tools for disease surveillance depending on the epidemiological question (eg. Vaccine coverage, source identification,
immunity assessments)

**Social competence**
Students, in a team, engage in an open and respectful discussion of the topic and corresponding questions.

**Applicability in this and other Programs**
This course is relevant to global public health students or other students that are interested to understand the molecular world.

**Entrance Requirements**
None

**Learning Content**
- Review the basics of DNA, RNA and protein synthesis as the foundation of life
- Explore the molecular and immunological concepts linked to disease markers and antimicrobial resistance
- Link the basic biomolecular mechanisms to methodologies used to monitor or impact health, particularly linked to the monitoring of markers linked to disease frequency (both molecular, immunological)
- Explore emerging concepts interventions being used or explored for public health actions (eg. Epigenetics, gene-drive, CRISPR, precision health)

**Teaching Methods**
The course will contain lectures, learning tasks, web-discussions/presentations, independent studies and presentations by the students to emerging topics.

**Recommended Literature**
# GPH-9 ELECTIVE: TECHNOLOGY FOR GLOBAL PUBLIC HEALTH

<table>
<thead>
<tr>
<th>Module code</th>
<th>GPH-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Sabine Dittrich</td>
</tr>
<tr>
<td>Course number and name</td>
<td>GPH-9 Technology for Global Public Health</td>
</tr>
<tr>
<td>Course lecturer</td>
<td>Prof. Dr. Sabine Dittrich</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>yearly</td>
</tr>
<tr>
<td>Course type</td>
<td>Elective</td>
</tr>
<tr>
<td>Niveau</td>
<td>Postgraduate – MSc</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 90 hours Total: 150 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>Portfolio Examination (PoP)</td>
</tr>
<tr>
<td>Weight</td>
<td>5/90</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

## Module Objective

Innovations and Technologies (vaccines, medical devices, drugs, diagnostics, digital tools) for health have transformed how medicine is practiced and how public health practitioners are able to act upon challenges. The road from a good idea to a true innovation and subsequent use in clinics is long and this module aims to explore some of the steps and data needed to ensure only high-quality technologies/innovations make it to the patients. The goal is to introduce the students to the development and study pipeline needed to move technology innovations from concept to deployment. This module aims to enable students to understand how to set priorities and gather data to inform deployment. The module will particularly focus on clinical trials and research needs.

### Professional competence

**Students**
- Understand the different phases of product development: from concept to access
- Understand the concepts of evidence generation for technologies in the context of Good Clinical/Laboratory Practice (GC/LP) to ensure safe use
- Gain a basic understanding of different types of regulatory bodies and approvals as well as the types of studies that need to be conducted
- Understand basic concepts of challenges that arise when innovations are ready for deployment (eg. Market access challenges)

### Methodological competence

**Students**
- are able to understand basic product development terminologies and pathways
- are able to plan and draft clinical study protocols considering GCP or GLP
- are able to do a basic assessment of evidence strengths of different types of data sets for regulatory bodies or policy recommendations
**Social and Personal competence**

Students, in a team, engage in an open and respectful discussion of lived and learned experiences linked to the use of technology for health. Further, students will develop a basic study protocol for an imagined health technology in a small group with a final presentation to the larger group. Overcoming the corresponding challenges linked to communication styles, backgrounds and knowledge is a critical learning outcome for anybody aiming to embark on a career in the international public health space.

**Applicability in this and other Programs**

This course is relevant to all courses dealing with health or engineering where the goal is the use in human subjects.

**Entrance Requirements**

None

**Learning Content**

1. Overview of product development steps and explore different pipelines for drugs, diagnostic or vaccines, or digital innovations
2. Explore different concepts to ensure an innovation is addressing an existing need. Understand the concept of “use cases” and “target product profiles” and how they interact.
3. Review the different types of evidence that are needed and understand why good clinical practice is critical to ensure patient safety. Provide a basis to plan save evidence generation and enable students to continue to a GCP certificate
4. Review different types of regulatory approval needs and how these are used in the global public health context
5. After an innovation has been developed and approved, we will explore the deployment challenges and the ecosystem that needs to be in place to sustainable enable use in health settings

**Teaching Methods**

The course will be broken out into the 3 themes: Product development and pipelines; Clinical evidence generation and regulatory needs; Implementation and deployment. Across those themes lectures, learning tasks, web-discussions/presentations, independent studies, and seminars will be conducted to allow applied learning and critical thinking.

**Recommended Literature**

- [https://www.policycuresresearch.org/](https://www.policycuresresearch.org/)
- WHO RandD observatory: [https://www.who.int/observatories/global-observatory-on-health-research-and-development](https://www.who.int/observatories/global-observatory-on-health-research-and-development)
Module Objective

Law in Global Public Health is a field that deals with legal norms and procedures necessary to create the conditions for people around the world to attain the highest possible level of physical and mental health. Ethics in Global Public Health support health professionals to mediate conflicts and questions around the connection between the individual’s and the community’s interests in health. The module provides ethical and legal concepts and mechanisms to explore global public health issues, human rights, national and international institutions, and their interplay from a discourse perspective.

Professional competence

Students
- Understand essentials in law
- Understand the relevance of national, regional and international law to public health and the impact in varying cultural settings
- Understand Legal Epidemiology and legal mapping and is able to apply mapping tools.
- Understand the impact of the World Health Organisation (WHO) in healthcare law
- Understand essentials in ethics
- are able to understand the challenges of legal and ethical questions
- understand the distinction between medical ethics, global public health ethics and bioethics

Methodological competence

Students
- are able to apply ethical reasoning towards questions in healthcare
- apply ethical decision-making to discuss legal and ethical dilemmas
- can critically assess legal and regulatory frameworks

Social and Personal competence

Students
• are able to synthesize and express ideas and develop public speaking skills for debates and presentations.
• Develop perspective taking by applying their listening skills, empathy and emotional intelligence.

**Applicability in this and other Programs**

The module can be used in other study programs related to healthcare.

**Entrance Requirements**

None

**Learning Content**

• Global Public Health Law in theory
• Use cases of Global Public Health Law
• Ethics in Global Public Health in theory
• Use cases of ethics in Global Public Health

**Teaching Methods**

Independent studies, seminars, workshops and methodology, lectures, learning tasks and web-discussions/presentations, Moodle learning environment contains materials

**Recommended Literature**

**Module Objective**

Combining global public health with data analytics and epidemiology is essential to assist healthcare decision-making, change evidence-based policies and for healthcare interventions targeting diseases, health systems, lifestyles and the environment. The overall aim of the module is to introduce the students to the basic concepts and methods of epidemiology, data analysis and statistics. It further allows students to critically assess research papers, study designs and apply research methods.

**Professional competence**

Students
- Are able to critically evaluate and to use techniques of data acquisition, design of studies and data analysis.
- Are able to research and to understand epidemiological papers and to examine and evaluate their relevance
- know about common data analysis workflows and are able to interpret and visualize the achieved results
- know the basic statistical evaluation procedures used in health research
- acquire the ability to critically analyse existing epidemiological studies with regard to the quality of their statistical processing
- know epidemiological measures of risk and can calculate them from data

**Methodological competence**

Students
- know the different analysis methods and can use and analyze recommended systems.

**Social and Personal competence**

- By working in a team, students are able to achieve their own goals and to take on leadership tasks or to contribute to the project team.
- By working in a team on a complex question, the students are able to
communicate precisely and purposefully.

**Applicability in this and other Programs**
The module can be used in other study programs related to healthcare

**Entrance Requirements**
None

**Learning Content**
- Introduction to concepts and methods of epidemiology
- deepening statistical data analysis
- deepening epidemiological study types
- critical analysis and evaluation of an epidemiological article
- meaningfulness of test procedures
- possible disturbance variables in studies and their prevention or control data visualisation
- Mobile Health Applications
- Wireless Monitoring for Health and Disease
- Consumer Digital Health Applications
- Medical Imaging Informatics
- Enhanced Medical Intervention, Virtual and Augmented Reality
- Artificial Intelligence in Medicine and Healthcare
- Legal and Regulatory Aspects of Digital Health Applications

**Teaching Methods**
Independent studies, seminars, workshops and methodology, lectures, learning tasks and web-discussions/presentations, Moodle learning environment contains materials

**Recommended Literature**
Module Objective

Universal Health Coverage (UHC) is one part of the Sustainable Development Goals (SDG). UHC aims to provide financial risk protection in healthcare, access to quality essential health-care services and access to safe, effective, quality and affordable essential medicines and vaccines for all. The overall aim of the course is to develop an understanding of health financing, policies and its aspects to improve universal health coverage whilst ensuring no one is left behind. It further equips with skills to understand, analyse and evaluate UHC in different countries, policies and health systems.

Professional competence

Students
- understand essentials in Universal Health Coverage
- understand technical aspects of health financing
- are able to understand UHC in different settings
- understand the different challenges of UHC in high income countries and in low- and middle-income countries.
- understand how to measure and evaluate UHC are able to develop methods to improve UHC

Methodological competence

Students
- analyse in-depth concepts of Universal Health Coverage in higher-income and low- and middle-income countries
- are able to evaluate UHC by using adequate measures and methods

Social and Personal competence

Students are able to reflect upon problems and apply logical reasoning to connect ideas in order to make clear judgements and develop critical thinking.

Applicability in this and other Programs
The module can be used in other study programs related to healthcare

**Entrance Requirements**
None

**Learning Content**
- Relationship in quality between health, healthcare and UHC
- Monitoring and evaluating quality in health
- Approach to improve quality in current national and international practices
- Health financing for UHC
- Regulatory mechanisms
- Concepts and implications for policy

**Teaching Methods**
Independent studies, seminars, workshops and methodology, lectures, learning tasks and web-discussions/presentations, Moodle learning environment contains materials

**Recommended Literature**
Module Objective

Knowledge acquisition of the essential methods of the application-oriented field of Artificial Intelligence (AI) and the ability to apply them to the issues of health sciences and professional practice. As an educational goal, students experience the scope of "artificial intelligence" and can generate knowledge using AI methods. Participants become acquainted with the knowledge management process and learn to optimise its sub-processes in the professional environment of the healthcare sector. To do so, they now pay particular attention to "soft factors" and the knowledge culture in their professional environment in the healthcare sector. As a result of the interdisciplinary approach, participants acquire the corresponding methodological competence in knowledge logistics, such as knowledge modelling and knowledge representation, as well as knowledge assessment procedures with an intellectual capital report in order to become a role model and lead knowledge management projects. They can assess the different research directions. After completing the module, students will have achieved the following learning objectives:

Professional competence

Students

- have knowledge of soft factors and knowledge culture, of the knowledge management process, knowledge search, the knowledge representation methods (such as ontologies), knowledge assessment methods (such as intellectual capital report), knowledge management software (such as knowledge portals), chatbots and methods of machine learning (such as neural networks and 4.0 techniques).
- Use Information Visualization Methods for Different Data Types
- Are able to design interactive visualization systems for data from different application areas
- Combine visualization and automated data processing to solve big data Problems
- Apply knowledge about main characteristics of human visual perception in
Methodological competence

Students
- know programming with a logic programming language (PROLOG), with the Artificial Intelligence Modelling Language (AIML), of handling an NN toolbox, and the application of software for generating an intellectual capital report.
- can deal with the basic concepts of AI and know which knowledge representation formalisms are appropriate for which problems and can map domains in suitable formalisms.
- can create a concept of “virtual training for increasing the human capital” for their institute and also set up the concept of how to “successfully introduce knowledge management”.

Social and Personal competence

Students
- can implement their own knowledge-based ideas and defend them against competing approaches.
- Deepen their problem-solving skills through group work and team work

Applicability in this and other Programs

The module can be used in other study programs related to healthcare.

Entrance Requirements

None

Learning Content

Knowledge Management
1. Foundations and history of artificial intelligence
2. Knowledge management process and its sub-processes
3. Knowledge-based methods (knowledge representation such as ontologies, search methods, case-based closing, planning, machine learning, user modelling)
4. Knowledge management methods, such as those for promoting knowledge, exchange and the use of knowledge, knowledge visualisation, and knowledge assessment methods such as the intellectual capital report
5. Knowledge management software tools such as OpenKM.
6. Knowledge management systems (reference model, integrated systems such as in IBM), WMS in the healthcare sector. Architectures of knowledge management system couplings
7. Case study of knowledge management in hospitals using methods of optimized introduction of such knowledge management systems
8. Machine learning methods, in particular, neural networks in the theory backpropagation using the Tensorflow software
9. Chatbot programming
10. Expert systems
11. Recommended systems

Information Visualization and Visual Analysis
1. Overview of information visualization and visual analytics
2. Data presentation and data transformation
3. Visual representation of bivariate and multivariate data as well as time series and evaluation scales
4. Visual Analytics
   4.1 Big Data
   4.2 Data Mining
5. Case Study
Teaching Methods

The module provides a framework for self-organised learning in order to support students in the reflection and further development of professional, methodological and social competencies. In addition to theoretical inputs, interaction exercises, problem-solving tasks and role-plays are also used as the key methods. Guided feedback sessions sensitise students to their communication style, their role behaviour in groups, and the conditions for successful collaboration.

Recommended Literature

- Armutat, Sascha, u.a., Wissensmanagement erfolgreich einführen, DGFP,2002
- Görz, Günther, Rollinger, Claus-Rainer und Schneeberger, Josef, Handbuch der Künstlichen Intelligenz, Oldenbourg Verlag München, 4. Aufl., 2012
- Preim, B.: Interaktive Systeme /1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, Springer, Berlin [u.a.], 2. Aufl., 2010
**GPH-14: ELECTIVE: HEALTH ECONOMY & MANAGEMENT**

<table>
<thead>
<tr>
<th>Module code</th>
<th>GPH-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Georgi Chaltikyan</td>
</tr>
<tr>
<td>Course number and name</td>
<td>GPH-14</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>Yearly</td>
</tr>
<tr>
<td>Course type</td>
<td>Elective</td>
</tr>
<tr>
<td>Niveau</td>
<td>Postgraduate – MSc</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 90 hours Total: 150 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>Written Assignment (PStA)</td>
</tr>
<tr>
<td>Weight</td>
<td>5/90</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

**Module Objective**

The module aims to provide a profound understanding and equip students with an extended skills set in health management and health economics. Abilities to perform managerial tasks in various areas such as healthcare facilities, medical and pharmaceutical industries are essential requirements to systematically prepare and implement larger projects in healthcare.

**Professional competence**

Students

- understand principles in Health Economics, Marketing and corporate social responsibility
- know the functions of management and administration of healthcare business
- are able to describe and apply concepts of health financing
- recognise the complexity of the healthcare labour market and discuss different responses to it
- understand quality management in healthcare
- are able to evaluate key mechanisms of global and national health systems to deliver integrated high-quality health services

**Methodological competence**

Students

- are able to apply evidence-based leadership principles within health care environments
- apply managerial skills sets to perform productive teamwork and support innovation processes
- utilise statistical analyses methods to predict organisational responses to policy changes
- are able to plan and implement healthcare projects

**Social and Personal competence**
Students

- develop their conflict management skills in order to create productive, people-centered work cultures

**Applicability in this and other Programs**

The module can be used in other study programs related to healthcare.

**Entrance Requirements**

None.

**Learning Content**

- Application of economic principles in healthcare
- Workforce planning, forecasting and human resource crisis
- Social justice and health inequalities in health systems
- Health financing system
- Reimbursement systems
- Strategy and modern healthcare management
- Evidence-based quality improvement and quality domains
- Collecting, processing and analyzing economic data

**Teaching Methods**

Independent studies, seminars, workshops and methodology, lectures, learning tasks and web-discussions/presentations, Moodle learning environment contains materials

**Recommended Literature**

GPH-15: ELECTIVE: MedTech: COGNITIVE PROCESSES AND AI TECHNOLOGY

<table>
<thead>
<tr>
<th>Module code</th>
<th>GPH-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Thomas Spittler</td>
</tr>
<tr>
<td>Course number and name</td>
<td>GPH-15 MedTech: Cognitive Processes and AI Technology</td>
</tr>
<tr>
<td>Course Lecturer</td>
<td>Prof. Dr. Thomas Spittler</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>Yearly</td>
</tr>
<tr>
<td>Course type</td>
<td>Elective</td>
</tr>
<tr>
<td>Niveau</td>
<td>Postgraduate – MSc</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 90 hours Total: 150 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written examination (schrP)</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Weight</td>
<td>5/90</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

**Module Objective**

For the design of future technological health devices integrating interdisciplinary experience is inevitable. This course transfers knowledge from human-machine design, AI technology and human cognition to initiate creative and innovative thinking processes within global public health. Introduction to theoretical concepts of cognitive processing that are relevant for rehabilitation highlight possibilities for future health technologies on international levels and challenges in high as well as lower resource settings. The application and integration of neuropsychological information for the purpose of efficient therapeutic intervention from both patient and caregiver perspective illustrated by exoskeletons in stroke recovery completes the cross-disciplinary course profile.

**Professional competence**

Students

- understand the main characteristics of human-machine interaction and human-centred design
- explain the principles of human cognition and information processing
- understand the functioning of Machine Learning algorithms
- comprehend the benefits and risks of modern AI technologies in the context of health care, and the field of rehabilitation
- elaborate how AI can be used in the context of stroke rehabilitation with exoskeletons

**Methodological competence**

Students

- discuss the potentials and challenges of AI technologies in higher and lower-and-middle income countries
- can deal with the fundamentals of AI and its application in a rehabilitation context
- are able to apply Machine Learning concepts
• can initiate innovative thinking processes

**Social and Personal competence**

Students
• are able to reflect upon challenges and potentials of human-machine interactions and AI
• Participate actively in group discussions

**Applicability in this and other Programs**

The module can be used in other study programs related to healthcare or healthcare informatics.

**Entrance Requirements**

None

**Learning Content**

1. Human-Machine Interaction
2. Cognition
3. AI Technologies
4. AI in Rehabilitation
5. Case Study: Exoskeletons for Stroke Rehabilitation

**Teaching Methods**

Independent studies, seminars, workshops and methodology, lectures, and web-discussions/presentations.

**Recommended Literature**

Module Objective

Modern health policies and practices are increasingly informed through evidence-based research and training. With health research exponentially growing in today’s world, more emphasis is necessary to translate health knowledge into practice. The Synergies Between Education and Health module aims to teach students how to apply research-based policy into practice. Students will learn about how international health practices can be implemented into practice in a globalized context. Through the lens of global health, international practices will be critically evaluated for their feasibility across different healthcare systems & contexts. The health practices emphasizes critical public health interventions for low- and middle-income countries (LMIC).

Professional competence

Students
- will learn how evidence-based health policies are translated into training courses.
- will learn how critical health problems are contextualized in LMICs.
- will learn about different aspects of healthcare service delivery ranging from public health campaigns using pharmaceutical interventions to appropriate use of medical equipment for healthcare personnel

Methodological competence

Students
- learn about commonly used terminology for public health interventions.
- will learn about the way different types of training designed for various healthcare professionals are structure and taught.
- will be able to critically analyze the feasibility of public health interventions within the context of different countries.

Social and Personal competence
Students
- will learn about socio-cultural considerations to implementing health services that influence a public health intervention’s potential effectiveness.
- will practice working together in groups to learn content and develop a cohesive presentation.
- will practice oral presentation skills.

Applicability in this and other Programs
The module is relevant to courses related to healthcare worker training, public health program interventions, and the use of eLearning

Entrance Requirements
None

Learning Content
- How public health provision is delivered through an international lens.
- The role of the World Health Organization for providing evidence-based policy and recommendations, particularly for LMIC.
- Understanding and presenting training and program recommendations for public health workers in different capacities.
- Factors and considerations for different countries based on healthcare system structure, cultural tendencies, and history of health provision.
- Critical thinking and evaluation of feasibility of healthcare worker training or public health campaigns when evidence is based on a different context.

Teaching Methods
The course is taught in a small capacity through traditional lecture methods for the foundational concepts and ideas. The majority of the course is taught through students directly taking different OpenWHO online courses ranging from healthcare worker practice to implementing a national public health campaign. Students will teach one content from the OpenWHO courses as well as information about different countries' healthcare systems

Recommended Literature
- https://openwho.org/
- https://www.who.int/health-topics/health-systems-governance
Module Objective

In this module students learn how to develop efficiently usable, user-friendly, and accessible digital human-computer interfaces on stationary, mobile and wearable devices in a human-centered way. They will identify interaction failures at existing eHealth solutions and develop digital user interfaces according to digital design rules and the Web Content Accessibility Guidelines (WCAG 2.x) standard. Furthermore, they should get an understanding in digital interface design concepts like responsive design, wireframing, web-technology based mockups, and multimodal interfaces which they should use in developing a human-computer interaction interface prototype.

After completing the module, the students will have achieved the following learning objectives:

**Professional competence**

Understanding
- Different Types interface design possibilities on different device categories.
- The importance of digital accessibility and the European accessibility act.
- How to develop human-computer interface wireframes and prototypes.

**Methodological competence**
- Discuss the importance accessible, user-friendly and efficient human-computer interfaces
- Analyze the different interaction possibilities referring to physical and mental abilities

**Social and Personal competence**

Students, in a team of max. two, develop jointly a multimodal human-computer interface prototype for an eHealth target issue (e.g. telemonitoring, mental health support system, care solutions etc.). They will be able to reflect on their working results and evaluate them based on their knowledge and with digital health impairment simulation software.

**Applicability in this and other Programs**
The module can be used in other study programs related to IT in health- and social care.

**Entrance Requirements**

Course: Digital Health

**Learning Content**

- Human-Computer Interaction (HCI) concepts
- Digital Accessibility
- Universal Design
- Digital interface / multimodal interface possibilities
- Responsive Design
- Wireframing and mockups
- WCAG 2.0
- eHealth HCI interfaces
- Human-Centered interface development
- Prototyping

**Teaching Methods**

Content (live lecture, recorded lecture, external videos, literature) is provided on a collaborative online platform including independent studies, seminars, and workshops on methodologies and practical work.

**Recommended Literature**

- W3C (2008): Web Content Accessibility Guidelines (WCAG) 2.0. Online: [https://www.w3.org/TR/2008/REC-WCAG20-20081211/](https://www.w3.org/TR/2008/REC-WCAG20-20081211/)
GPH-18 MASTER MODULE

<table>
<thead>
<tr>
<th>Module code</th>
<th>GPH-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Thomas Spittler</td>
</tr>
<tr>
<td>Course number and name</td>
<td>GPH-18 Master Module</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>Yearly</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>Postgraduate – MSc</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>0</td>
</tr>
<tr>
<td>ECTS</td>
<td>30</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 0 hours self-study: 900 hours Total: 900 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>master thesis (MA) presentation (Präs) 15 - 45 min.</td>
</tr>
<tr>
<td>Weight</td>
<td>30/120</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

Module Objective

The master's thesis is intended to determine whether the students have acquired the thorough specialist knowledge necessary for the transition to work, have an overview of the interrelationship between the subject and have the ability to work on problems in the in-depth subject area with scientific methods and to apply scientific knowledge. Furthermore, the students are equipped with specific research methods and academic writing skills courses accompanying their thesis projects.

The master's thesis is intended to show that the candidate is capable of independently completing a practical task in its technical details as well as in interdisciplinary contexts according to scientific and practical aspects within a specified period.

The approximately 30-minute colloquium (presentation and questioning) serves to determine whether the candidate is able to verbally present the essential basics, relationships and results of the master's thesis, to justify independently and to assess their importance for practice; the use of presentation aids is expressly encouraged.

- Applications of scientific methods
- Scientific documentation
- Interdisciplinary work
- Interface competence

Student can
- choose a thesis topic justified for his/her professional development and justify the choice from different perspectives
- carry out work-related Master-level research and development based on the needs of the user / subscriber.
- apply scientific and evidence-based knowledge to the thesis process and to develop his/her own expertise.
- make appropriate use of research and development or artistic methods appropriate to profession and to the subject of thesis.
• produce a clearly defined, logical and professional report of his/her thesis.
• evaluate the essential contents, results or outputs of thesis and justify relevance in the context of his/her own field, the needs of the subscriber / user and the development of his/her own expertise.
• design and implement a thesis description and complete it as a work plan.

**Applicability in this and other Programs**

not applicable

**Entrance Requirements**

all other modules

**Learning Content**

• independent preparation of the thesis
• guidance related to the different stages of the thesis
  o finding topics for master theses
  o types of scientific work
  o problem analysis, definition and structuring
  o Research Methods
  o Finding relevant literature and data
  o Quantitative analysis vs qualitative analysis
  o Citation and plagiarism
  o Objective and unbiased approaches
  o Nature and components of a scientific paper
  o Scientific Writing Skills
  o Limitations of one’s own analysis capabilities
• results / output of the thesis
• presentation of the work at the seminar

**Teaching Methods**

The student acquires the material needed for the thesis.

**Recommended Literature**


**Videos**

• https://www.youtube.com/watch?v=UY7sVKJPTMA
  o Prof. Pete Carr, Faculty Member at the University of Minnesota

• https://www.youtube.com/watch?v=IeaD0ZaUJ3Y
  o Prof. Pete Carr, Faculty Member at the University of Minnesota

• https://www.youtube.com/watch?v=vtIzMaLkCaM
  o Larry McEnerne, Director of the University of Chicago's Writing Program