Module Guide
Künstliche Intelligenz für smarte Sensorik / Aktorik

Faculty Applied Natural Sciences and Industrial Engineering
Examination regulations 18.11.2020
Date: 26.07.2022 11:13
Table of Contents

MKI-1 Intelligent Systems
MKI-2 Smart Sensors and Actuators
MKI-3 Case Study Sensors and Actuators
MKI-4 Embedded Control Solutions
MKI-5 Case Study Embedded Control Solutions
MKI-6 Advanced Intelligent Systems
MKI-7 Case Study Intelligent Systems
MKI-8 Autonomous Systems
MKI-9 Case Study Autonomous Systems
MKI-10 Subject-related elective course (FWP)
MKI-11 Systems Design
MKI-12 Master module
MKI-1 Intelligent Systems

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Christina Bauer</td>
</tr>
<tr>
<td>Course number and name</td>
<td>MKI11 Introduction to Artificial Intelligence, MKI12 Machine Learning and Deep Learning</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Prof. Dr. Christina Bauer, Prof. Dr. Roland Platz, Tobias Schaffer, Sunil Survaiya</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>each semester</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Level</td>
<td>postgraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 90 hours, self-study: 90 hours, Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 120 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>120 min.</td>
</tr>
<tr>
<td>Weight</td>
<td>6 out of 90 ECTS</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

Module Objective

Artificial Intelligence (AI) is a general term that describes the combination of all necessary methodological and technological tools needed for autonomous systems, such as autonomous vehicles or robots. This course gives an overview about what AI is, its historical background, what AI can do, and cannot do. At the end of the course, the
students will be able to distinguish between methodological concepts and tools about how autonomous systems gain knowledge, evolve reasoning, and keep learning.

In the module "Intelligent Systems", basic concepts of artificial intelligence are explained and the connection to intelligent sensor/actuator systems is established. Students are introduced to machine learning and deep learning as sub-fields of artificial intelligence. They are able to evaluate and select the best solution / approach regarding artificial intelligence for a specific application. Upon completion of this module, the student has achieved the following learning objectives:

Professional competence:
- understanding history approaches and methods of artificial intelligence in general
- understanding various methods of machine learning
- understanding modelling and applying of deep learning to various fields of application

Methodological competence:
- application of different data collection and preprocessing methods
- application of various machine learning techniques, such as regression
- setting up deep learning models including various numbers of layers and hyperparameters

Personal competence:
- The module Intelligent Systems teaches students how to solve complex tasks and problems in establishing and application of artificial intelligence in products and systems
- The students learn how to analyze and evaluate a problem and how to apply artificial intelligence to solve it

Social competence:
- Students are able to reflect on the requirements in the field of intelligent systems and transfer them to relevant application scenarios.

Applicability in this and other Programs

The module provides the necessary theoretical knowledge and transfer possibility for the application of artificial intelligence in different systems and applications, specifically in
sensors and actuators. Interfaces to mechatronics, electrical engineering and computer engineering.

Entrance Requirements

Bachelor degree in mechatronics or a closely related field

Learning Content

This module elaborates on the fundamental Artificial Intelligence (AI) concepts and establishes the correlation to intelligent sensor/actuator systems.

- definition AI
- historical background
- AI within the process of knowledge management
- software agents
- knowledge management & expert systems
- applications in intelligent sensor/actuator systems for Mechanical Engineering
- selection of current publications
- limits of AI
- logic
- reasoning with uncertainty
- reinforcement learning
- neural networks

Furthermore, this module introduces Machine Learning. Correspondingly, this module presents a wide spectre of methods ranging from linear models to deep neural networks.

- Fundamentals: prognoses, correlation and causality
- Data collection, data processing and exploratory data analysis
- Operating principle of selected models:
 - linear regression including Maximum Likelihood Estimation, derivation of the error function and derivation of gradient descent
 - Feature Space: feature engineering and dimensional reduction (principal component analysis)
 - evaluation and tuning of models: selection of metrics, overfitting/underfitting, optimisation of hyper parameters
 - Naive Bayes
 - decision trees
 - k-means clustering
- Neural Networks:
 - training with backpropagation
 - selection of a suitable architecture
 - comparison to other (traditional) models
efficient training on GPUs
- Applications in intelligent sensor/actuator systems

Teaching Methods

- Seminar-like teaching with joint exercises as well as presentations to deepen the knowledge achieved through application
- i-Learn (online learning platform)

Recommended Literature

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2017): An Introduction to Statistical Learning: with Applications in R. Springer, New York
Thomas Dean, James Allen, Yiannis Aloimonos, "Artificial Intelligence: Theory and Practice", Addison Wesley
Stuart Russel, Peter Norvig, "Artificial Intelligence - a modern approach", Prentice Hall New Jersey
MKI-2 Smart Sensors and Actuators

Module code	MKI-2
Module coordination | Prof. Jürgen Wittmann
Course number and name | MKI21 Microsystems and Physical Crosscoupling
MKI22 Data Acquisition and Control
Lecturers | Sunil Survaiya
Dr. Tim Weber
Prof. Jürgen Wittmann
Semester | 1
Duration of the module | 1 semester
Module frequency | each semester
Course type | required course
Level | postgraduate
Semester periods per week (SWS) | 6
ECTS | 6
Workload | Time of attendance: 90 hours
self-study: 90 hours
Total: 180 hours
Type of Examination | written ex. 120 min.
Duration of Examination | 120 min.
Weight | 6 out of 90 ECTS
Language of Instruction | English

Module Objective

The module "Smart Sensors and Actuators" introduces to sensor/actuator technology starting from the crystal through various semiconductor manufacturing disciplines such as lithography or etch up to integration to complete devices. It also focuses on various sensor principles for the conversion of
signals of different physical domains into an electrical sensor output, e.g. magnetic-electric conversion. These fundamental aspects are the composed to smart sensor and actuators. In addition, this module illustrates the conceptual signal paths ranging from the raw signal acquisition of sensory input variables to the functional use of AI-based software modules. Upon completion of this module, the student has achieved the following learning objectives:

Professional competence:
- Crystal growth and properties including impact on devices
- Manufacturing technology of MEMS sensor/actuators
- Sensor technology and sensor principles
- Understanding of smart sensors & actuators
- Signal processing
- Feature extraction, processing & statistical evaluation of data
- Sensor Reliability

Methodological competence:
- understanding the interdependencies of technology with product performance
- understanding the principles and limitations of sensors and actuators
- discussion of intelligence as part of sensor/actuator design
- understand analogue and digital sensor signals including respective signal processing

Personal competence:
- analysis and discussion of technical issues in production and operation of sensors and actuators
- students learn what to focus on when evaluating or selecting a sensor
- students learn limits and opportunities of various sensor interfaces (e.g. PWM) and various signal processing techniques

Social competence:
- The students use their competences acquired in the lectures and are able to discuss advantages and disadvantages of various sensor technologies and principles as well as the respective signal processing

Applicability in this and other Programs

The module provides the necessary theoretical knowledge and transfer possibility for the application of sensors and actuators in various application scenarios. It creates interfaces to courses of study such as mechatronics, computer science or electrical engineering.
Entrance Requirements

Bachelor degree in mechatronics or a closely related field

Learning Content

This module establishes the fundamental technology aspects as well as interactions between the different physical areas (domain), e.g. the conversion from non-electrical to electrical signals:
- crystal technology, structures and properties
- microsystems manufacturing technology
- integration technology
- sensor principles & signal conversion
- MEMS smart sensors and actuators
- Sensor Reliability

Furthermore, this module illustrates the conceptual signal paths ranging from the raw signal acquisition of sensory input variables to the functional use of AI-based software modules.
- data types and short introduction to data
- sensory raw signal acquisition including images and data from various sources
- signal processing and signal featur processing
- wireless and grid-bound signal transmission
- electronical µC input structures for the analogue/digital conversion
- A/D conversion by means of successive approximation
- the Delta-sigma modulation
- control strategies for smart sensors
- pilot-control strategy for smart actuators
- electronical power stages for PWM (Pulse-width modulation)
- H-bridge
- Kalman Filter
- statistical concepts to evaluate data (parameter space, design of experiments)
- feature extraction from data for further use in AI and machine learning

Teaching Methods

- Seminar-like teaching with joint exercises as well as presentations to deepen the knowledge achieved through application
Recommended Literature

Klös, A. "Nanoelektronik - Bauelemente der Zukunft", Hanser, 2018
MKI-3 Case Study Sensors and Actuators

Module code	MKI-3
Module coordination | Prof. Jürgen Wittmann
Course number and name | MKI31 Case Study Sensors and Actuators
Lecturer | Prof. Jürgen Wittmann
Semester | 1
Duration of the module | 1 semester
Module frequency | each semester
Course type | required course
Level | postgraduate
Semester periods per week (SWS) | 4
ECTS | 6
Workload
- Time of attendance: 60 hours
- self-study: 120 hours
- Total: 180 hours
Type of Examination | written student research project
Weight | 6 out of 90 ECTS
Language of Instruction | English

Module Objective

The case study **"Sensors and Actuators"** takes up current case examples related to the application of smart sensors and actuators. Furthermore, students are given the opportunity to deal with these topics independently and creatively. The intention of this case study is to introduce the students to a practical and industry-oriented way of technical problem solving.

Upon completion of this module, depending on a more theoretical or more practical focus, students will be able to identify limitations and opportunities of sensors and actuators in their specific field of application.

Professional competence:
- in depth knowledge of a specific subarea of sensors, actuators or the respective technology
- practical experience in construction and set up of sensor/actuator systems
- knowledge and practical experience in sensor/actuator performance evaluation

Methodological competence:
- Students are able to execute a literature search in a specific sensor or actuator related subarea
- Students are able to evaluate and assess sensor principles for specific fields of application

Personal competence:
- Case Study Sensors and Actuators teaches students how to solve complex tasks in teams with distributed task areas. The students learn to analyse, synthesise and evaluate a task in relation to smart sensors and actuators in an application-related manner.
- Students are required to present the progress of their respective project in regular meetings

Social competence:
- The students are able to consider questions in the area of smart sensors and actuators on the basis of case studies and to deepen their competences acquired in the module in group work and to use them in a prepared manner.
- The students are able to consider the problems from different perspectives and to use their competences acquired in the module appropriately and situation-based in individual and group discussions.

Applicability in this and other Programs

The module provides the necessary theoretical knowledge and the transfer capability to gain a deeper understanding of sensor/actuator principles and the capability to apply and to evaluate sensors/actuator in and for a specific area of application. This creates interfaces to courses of study such as mechanical engineering, mechatronics, electrical engineering.

Entrance Requirements

Bachelor degree in mechatronics or a closely related field
Learning Content

On the basis of a selected application example, the students should explore and work on the topic themselves by means of literature research, independent sub-tasks, etc. The topics of the case studies can be chosen from any subject area.

The topics of the case studies can vary each semester.

Teaching Methods

- Literature research
- Simulations
- Construction
- Application of evaluation techniques
- Guided work on seminar topics in working groups. Accompanying events / presentations by external speakers depending on the selected topic area

Remarks

The case studies are examined as a so-called "Prüfungsstudienarbeit" (student research report) and are therefore not a classic examination.

The theoretical knowledge acquired by the students is specifically applied in practice in the case study topics so that students analyse problems independently and apply proposed solutions. This intensifies the transfer of knowledge into practice and the targeted deepening of the acquired technical and methodological competences by recognising connections and evaluating them.

Recommended Literature

Klös, A. "Nanoelektronik - Bauelemente der Zukunft", Hanser, 2018
MKI-4 Embedded Control Solutions

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Roland Platz</td>
</tr>
</tbody>
</table>
| Course number and name | MKI41 Microcontroller Architectures
 | MKI42 Model Based Function Engineering |
| Lecturers | Prof. Dr. Robert Bösnecker
 | Prof. Dr. Roland Platz
 | Josef Schmid |
| Semester | 1 |
| Duration of the module | 1 semester |
| Module frequency | each semester |
| Course type | required course |
| Level | postgraduate |
| Semester periods per week (SWS) | 6 |
| ECTS | 6 |
| Workload | Time of attendance: 90 hours
 | self-study: 90 hours
 | Total: 180 hours |
| Type of Examination| written ex. 120 min. |
| Duration of Examination | 120 min. |
| Weight | 6 out of 90 ECTS |
| Language of Instruction | English |

Module Objective

The module "Embedded Control Solutions" examines microcontroller architectures in view of their features for signal processing and the creation of actuator signals. In addition, the construction of complex technical systems...
or products requires a systematic approach, which can be supported decisively by the application of models in the product lifecycle.

Model based Function Engineering focus is put on the importance of a systematic approach for a successful design of complex technical systems. Virtual conceptual models support and evaluate the design process in all stages in the product life cycle - from the first idea to serial production. This course introduces the modeling of the main design stages, such as definition and specification, concept, optimization via verification, design, realization and test via validation. The course further discusses conceptual approaches to evaluate uncertainty and reliability of the product design. Computational tools like SysML and Matlab support the modeling process.

Upon completion of this module, the student has achieved the following learning objectives:

Professional competence:
- understanding microcontroller architectures in view of their features for signal processing
- understand virtual conceptual modeling tools in the design process
- understand the complete product design process from a modeling perspective

Methodological competence:
- apply microcontroller signal processing in real systems and learn to create actuator signals
- apply computational tools like SysML and Matlab to support the modeling process
- use and apply design relevant methods, such as Design of Experiments (DoE)

Personal competence:
- The students learn, how to analyze and evaluate a task in relation to microcontroller and microcontroller architectures
- They understand and learn to apply modeling methods in the design process

Social competence:
- Students are able to reflect on the requirements in the field of embedded control solutions and transfer them to relevant application scenarios.
Applicability in this and other Programs

The module provides the necessary theoretical knowledge and transfer possibility for microcontroller architectures and model based function engineering. Interfaces to mechatronics, electrical engineering and computer engineering.

Entrance Requirements

Bachelor degree in mechatronics or a closely related field

Learning Content

This module examines microcontroller architectures in view of their features for signal processing and the creation of actuator signals. The following topics are treated:

- Computer architecture/ instruction sets (RISC, CISC)
- Internal function units
- Real-time characteristics

In addition, the construction of complex technical systems or products requires a systematic approach, which can be supported decisively by the application of models in the product lifecycle.

Relevant topics include:

- definition of the product lifecycle
- description and virtual models of stages and processes in the Product Life Cycle
- applicable software as modeling language and virtual design tools
- identification, quantification and evaluation of data and model uncertainty
- design of experiments (DoE)
- statistical evaluation of failure and functional degradation
- reliability evaluation tools like Prognostics and Health Management (PHM), Failure Mode and Effects Analysis (FMEA), Functional Safety, etc.

Teaching Methods

- Seminar-like teaching with joint exercises as well as presentations to deepen the knowledge achieved through application
- i-Learn (online learning platform)

Recommended Literature

2004: VDI 2206 Design methodology for mechatronic systems
Bertsche, Bernd; Göhner, Peter; Jensen, Uwe; Schinköthe, Wolfgang; Wunderlich, Hans-Joachim (2009): Zuverlässigkeit mechatronischer Systeme. Berlin, Heidelberg: Springer Berlin Heidelberg

Gausemeier, Jürgen; Dumitrescu, Roman; Steffen, Daniel; Czaja, Anja; Wiederkehr, Olga; Tscharn, Christian (2015): Systems Engineering. in industrial practice. With assistance of Heinz Nixdorf Institute, University of Paderborn, Faculty of Product Engineering, Fraunhofer Institute for Production Technology IPT ? Project Group Mechatronic Systems Design, UNITY AG

Miková, #ubica; Kelemen, Michal; Virgala, Ivan; Lipták, Tomáš (2017): Model Based Design of Embedded Systems. In Journal of Automation and Control 5 (2), pp. 64?68

MKI-5 Case Study Embedded Control Solutions

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Roland Platz</td>
</tr>
<tr>
<td>Course number and name</td>
<td>MKI51 Case Study Embedded Control Solutions</td>
</tr>
</tbody>
</table>
| Lecturers | Johann Brunner
 | Josef Schmid |
| Semester | 1 |
| Duration of the module | 1 semester |
| Module frequency | each semester |
| Course type | required course |
| Level | postgraduate |
| Semester periods per week (SWS) | 4 |
| ECTS | 6 |
| Workload | Time of attendance: 60 hours
 self-study: 120 hours
 Total: 180 hours |
| Type of Examination | written student research project |
| Weight | 6 out of 90 ECTS |
| Language of Instruction | English |

Module Objective

The case study "Embedded Control Solutions" takes up current case examples related to the application of embedded control systems and their application within the area of AI. Furthermore, students are given the opportunity to deal with these topics independently and creatively. Edge Computing, for instance, is a potential topic focused upon.

Upon completion of this module, students will have achieved the following learning outcomes:

Professional competence:
- The module provides in depth knowledge of a specific subarea of embedded control solutions
- provides practical experience in this field

Methodological competence:
- Students are able to execute a topic related literature search in this field
- Students are able to evaluate and assess microcontroller architectures and respective signals
- Students are able to apply design modeling techniques

Personal competence:
- The Case Study "Embedded Control Solutions" teaches students how to solve complex tasks in teams with distributed task areas. The students learn to analyse, synthesise and evaluate a task in relation to embedded control solutions in an application-related manner.

Social competence:
- The students are able to consider embedded control solutions on the basis of case studies and to deepen their competences acquired in the module in group work and to use them in a prepared manner.
- The students are able to consider the problems from different perspectives and to use their competences acquired in the module appropriately and situation-based in individual and group discussions.

Applicability in this and other Programs

The module provides the necessary theoretical knowledge and transfer capability to gain a deeper understanding of microcontroller architecture, their relevant signals and the entire product design process from a modeling perspective. This creates interfaces to courses of study such as electrical engineering, mechatronics and computer engineering.

Entrance Requirements

Bachelor degree in mechatronics or a closely related field

Learning Content

On the basis of a selected application example, the students should explore and work on the topic themselves by means of literature research, independent sub-tasks, etc. The topics of the case studies can be chosen from any subject area.

The topics of the case studies can vary each semester.
Teaching Methods

- Literature research
- Simulations
- Application of evaluation techniques
- Guided work on seminar topics in working groups. Accompanying events / presentations by external speakers depending on the selected topic area

Remarks

The case studies are examined as a so-called "Prüfungsstudienarbeit" (student research report) and are therefore not a classic examination.

The theoretical knowledge acquired by the students is specifically applied in practice in the case study topics so that students analyse problems independently and apply proposed solutions. This intensifies the transfer of knowledge into practice and the targeted deepening of the acquired technical and methodological competences by recognising connections and evaluating them.

Recommended Literature

- Birmingham, Mumbai: Packt Publishing open source (Community experience distilled).
MKI-6 Advanced Intelligent Systems

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Jürgen Wittmann</td>
</tr>
</tbody>
</table>
| Course number and name | MKI61 Big Data
 | MKI62 Computer Vision |
| Lecturers | Prof. Dr. Patrick Glauner
 | Prof. Pavel Osinenko
 | Prof. Jürgen Wittmann |
| Semester | 2 |
| Duration of the module | 1 semester |
| Module frequency | each semester |
| Course type | required course |
| Level | postgraduate |
| Semester periods per week (SWS) | 6 |
| ECTS | 6 |
| Workload | Time of attendance: 90 hours
 | self-study: 90 hours
 | Total: 180 hours |
| Type of Examination | written ex. 120 min. |
| Duration of Examination | 120 min. |
| Weight | 6 out of 90 ECTS |
| Language of Instruction | English |

Module Objective

The module "Advanced Intelligent Systems" imparts knowledge on how to save and process big data quantities efficiently within the context of intelligent sensor/actuator systems. The students learn to develop and implement Big Data systems including the use of large sets of data for learning of deep
learning models. They will be able to identify typical problems related to big data, such as data quality and bias, and how to solve those problems. In addition, this module explains how computer image and video data is processed so that data becomes "visible". Upon completion of this module, the student has achieved the following learning objectives:

Professional competence:
- the students understand the concepts of the most popular approaches in big data and deep learning
- they know and understand basic concepts of computer vision, such as filter techniques and convolutional neural networks

Methodological competence:
- students have the capability to develop big data and deep learning related programs
- they know how to use CV techniques to identify and/or intensify features in images

Personal competence:
- the students are able to implement their own methods and approaches and can argue against competing methods

Social competence:
- Students are able to view the problems from the field of advanced intelligent systems from the meta level and to use their competences acquired in the module appropriately and situation-based in individual and group discussions.

Applicability in this and other Programs

The module provides the necessary theoretical knowledge and transfer possibility for the application of big data and computer vision in different systems and applications, specifically in sensors and actuators. Interfaces to mechatronics, electrical engineering and computer engineering.

Entrance Requirements

Bachelor degree in mechatronics or a closely related field.

It is recommended that module MSS-01 Intelligent Systems is completed before taking this module.
Learning Content

This module introduces how to save and process big data sets efficiently.

- Introduction: 3 Vs, history of big data, selected big data use cases
- Complexity analysis: time complexity, O, Omega, Theta, o, and O tilde notations, space complexity, recurrence relations, master theorem, dynamic programming
- Multithreading: parallelism and concurrency, creating threads, global interpreter lock (GIL)
- Databases: ER diagrams, relational databases, database management systems, queries, indexes, normalization, transactions
- Big data architectures: distributed systems, MapReduce, CAP theorem, speedup through GPUs and FPGAs
- Big data, small data, all data: data quality, biases in data sets, small sample size problems
- MLOps: project lifecycle, challenges, operations, principal components, pipelines, best practices
- Quantum computing: qubits, quantum logic gates, quantum computers, quantum algorithms
- Selected big data infrastructures, frameworks, libraries and tools

In addition, this module explains how computer image and video data is processed so that data becomes "visible".

Fundamentals: representations of images and videos

- Pre-processing of data using filters
- Determination of features
- Segmentation
- Convolutional Neural Networks (CNNs)
- Selection of current CNN architectures
- Applications in intelligent sensor/actuator systems

Teaching Methods

- Seminar-like teaching with joint exercises as well as presentations to deepen the knowledge achieved through application
- i-Learn (online learning platform)

Recommended Literature

C. Wagner, Kantenextraktion, Klassische Verfahren, Christoph Wagner, Vortrag, 2006 , ildsegmentierung und Computer Vision?

S. Winter, Digitale Bildverarbeitung, Skript zur Vorlesung, SS 2014, Institut für Neuroinformatik, Ruhr-Universität Bochum, Susanne Winter

E. Venkat, Digital Image Processing, EC2029 / IT6007, Anna University, Assistant Professor at VSA Group of Institutions
MKI-7 Case Study Intelligent Systems

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Jürgen Wittmann</td>
</tr>
<tr>
<td>Course number and name</td>
<td>MKI71 Case Study Intelligent Systems</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Jürgen Wittmann</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Level</td>
<td>postgraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours</td>
</tr>
<tr>
<td></td>
<td>self-study: 120 hours</td>
</tr>
<tr>
<td></td>
<td>Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written student research project</td>
</tr>
<tr>
<td>Weight</td>
<td>6 out of 90 ECTS</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

Module Objective

On the basis of an application example in the case study "Intelligent Systems", students independently work in groups on a coherent task taken from the area of intelligent systems in order to practise the content of previous or parallel lectures on the area of intelligent systems. Contributions from industry experts can deepen special topics further. The intention of this case study is to introduce the students to a practical and industry-oriented way of technical problem solving.

Upon completion of this module, students will have achieved the following learning outcomes:

Professional competence:
- understanding and applying methods of development, construction, testing & assessing intelligent systems such as intelligent sensors or sensor systems etc.
- understanding and applying methods, e.g. software, as part of an intelligent mechatronic or cyberphysical system
- understanding different approaches to machine learning and/or more specifically deep learning in various field of application

Methodological competence:
- application of different approaches to add intelligence to a product or system
- identify opportunities and limits of intelligent systems in development and during operation

Personal competence:
- The Case Study "Intelligent Systems" teaches students how to solve complex tasks in teams with distributed task areas. The students learn to analyse, synthesise and evaluate a task in relation to intelligent systems in an application-related manner.
- Students are required to present the progress of their respective project in regular meetings.

Social competence:
- The students are able to consider intelligent systems on the basis of case studies as well as to deepen their competences acquired in the module in group work and to use them in a prepared manner.
- The students are able to consider the problems from different perspectives and to use their competences acquired in the module appropriately and situation-based in individual and group discussions.

Applicability in this and other Programs

Based on the lectures of this course, the module provided additional specific knowledge in the respective field and the transfer capability to understand intelligence in systems and to apply intelligent systems in various fields of application. This creates interfaces to courses of study such as electrical engineering, mechatronics and computer engineering.

Entrance Requirements

Bachelor degree in mechatronics or a closely related field.
It is recommended that module MSS-01 Intelligent Systems is completed before taking this module.
Learning Content

On the basis of a selected application example, the students should explore and work on the topic themselves by means of literature research, independent sub-tasks, etc. The topics of the case studies can be chosen from any subject area.

The topics of the case studies can vary each semester.

Teaching Methods

- i-Learn (online learning platform)
- Literature research
- Simulations
- Development, construction and building of intelligent systems
- Application of assessment techniques
- Guided work on seminar topics in working groups. Accompanying events / presentations by external speakers depending on the selected topic area

Remarks

The case studies are examined as a so-called "Prüfungsstudienarbeit" (student research report) and are therefore not a classic examination.

The theoretical knowledge acquired by the students is specifically applied in practice in the case study topics so that students analyse problems independently and apply proposed solutions. This intensifies the transfer of knowledge into practice and the targeted deepening of the acquired technical and methodological competences by recognising connections and evaluating them.

Recommended Literature

"Intelligent Systems Design and Applications", 18th International conference on Intelligent Systems Design and Applications (ISDA2018), held in Vellore, India, Dec 6-8, 2018, Vol. 2

MKI-8 Autonomous Systems

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Wolfgang Aumer</td>
</tr>
</tbody>
</table>
| Course number and name | MKI81 Algorithms of Autonomous Systems
MKI82 Autonomous Robotics |
| Lecturers | Prof. Dr. Wolfgang Aumer
Dmitrii Dobriborsci
Prof. Pavel Osinenko
Tobias Schaffer |
| Semester | 2 |
| Duration of the module | 1 semester |
| Module frequency | each semester |
| Course type | required course |
| Level | postgraduate |
| Semester periods per week (SWS) | 8 |
| ECTS | 8 |
| Workload | Time of attendance: 120 hours
self-study: 120 hours
Total: 240 hours |
| Type of Examination| written ex. 150 min. |
| Duration of Examination | 150 min. |
| Weight | 8 out of 90 ECTS |
| Language of Instruction | English |

Module Objective

The module "Autonomous Systems" imparts knowledge on the fundamental algorithms in terms of the development of autonomous mechatronic & cyber-physical systems. Application does not only focus on
operating autonomous vehicles as well as autonomous robotics but also encompasses the areas of industrial production, smart home, application in environments damaging to humankind, medical technology, agriculture, energy production and distribution. This results in several relevant subject areas. Furthermore, this module addresses on the application of autonomous systems relevant to the industry and delves further into the content of mobile and collaborative robotics.

Upon completion of this module, the student has achieved the following learning objectives:

Professional competence:
- Coordinates & Maneuverability
- Vehicle Dynamic Kinematic
- Navigation, Localization and Mapping
- Neural network design for applications in autonomous systems
- Object detection and recognition (vehicles, road marking, traffic sign)
- Segmentation for self driving cars
- Decision making

Methodological competence:
- Application of neural nets and deep learning to autonomous systems
- Application of orientation, navigation and localization

Personal competence:
- The students learn how to analyze, apply and evaluate a task in relation to autonomous systems. They understand and learn to apply the algorithms used for self driving cars and, in general, autonomous systems

Social competence:
- The module Autonomous Systems teaches students how to solve complex problems in this field. In particular the case study provides opportunities to work in teams to work on larger scale projects. Students learn to work together and to defend their way of problem solving.

Applicability in this and other Programs

The module provides the necessary theoretical knowledge and transfer possibility for the application of autonomous robotics and algorithms for autonomous systems in different systems and applications. Interfaces to mechatronics, electrical engineering and computer engineering.
Entrance Requirements

Bachelor degree in mechatronics or a closely related field.
For the lecture Algorithms of Autonomous Systems it is recommended that the module MSS-01 Intelligent Systems is completed before attending this lecture.

Learning Content

This module presents the fundamental algorithms in terms of the development of autonomous mechatronic & cyber-physical systems. Application does not only focus on operating autonomous vehicles as well as autonomous robotics but also encompasses the areas of industrial production, smart home, application in environments damaging to humankind, medical technology, agriculture, energy production and distribution. This results in several relevant subject areas, such as:

- Modelling of dynamic systems
- Innovative automation methods
- Machine Learning
- Optimisation methods
- Mapping and navigation
- Sensor fusion

Furthermore, this module addresses the application of autonomous systems relevant to the industry and delves further into the content of mobile and collaborative robotics.

Relevant subject areas:

- Semantic Segmentation
- Lane & Road Sign detection & general object detection
- Convolutional Neural Network architectures
- Specific application of Machine Learning

Structure Autonomous Robotics:

1. Introduction and motivation
2. Locomotion Concepts
3. Mobile Robot Kinematics
4. Perception I
5. Perception II
6. Perception III: Image Saliency
7. Perception IV: Place Recognition & Line Fitting
8. Localization I, Incomplete section
9. Localization II, Incomplete section
10. SLAM I
11. SLAM II
12. Planning I
13. Planning II
Labs:
0. Environment setup
Ubuntu & ROS Installation
BASH basics
Essential ROS tutorial
Environment setup
1. Getting started with Turtlebot3.
Basic motions
Point-to-point movement
PID-control
Trajectory tracking
2. SLAM
Extended Kalman filter
Particle methods
graph-based optimization techniques
visual and rgb-d slam
3. Motion planning and obstacle avoidance
Advanced control strategies
Autonomous vehicles
Lane changing
Intro to reinforcement learning

Teaching Methods

- Seminar-like teaching with joint exercises as well as presentations to deepen the knowledge achieved through application
- i-Learn (online learning platform)

Recommended Literature

D. Ahlers, "Lane Detection for Intelligent Cars", University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Department of Informatics, Technical Aspects of Multimodal Systems, 05. December 2016
V. Chen, E. Chou, "Practical Object Detection and Segmentation"
F. Chollet, "Deep Learning mit Python und Keras", mitp, 2018
MKI-9 Case Study Autonomous Systems

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Wolfgang Aumer</td>
</tr>
<tr>
<td>Course number and name</td>
<td>MKI91 Case Study Autonomous Systems</td>
</tr>
</tbody>
</table>
| Lecturers | Dr. Tim Weber
 | Dr. Roman Zashchitin |
| Semester | 2 |
| Duration of the module | 1 semester |
| Module frequency | each semester |
| Course type | required course |
| Level | postgraduate |
| Semester periods per week (SWS) | 4 |
| ECTS | 6 |
| Workload | Time of attendance: 60 hours
 | self-study: 120 hours
 | Total: 180 hours |
| Type of Examination | written student research project |
| Weight | 6 out of 90 ECTS |
| Language of Instruction | English |

Module Objective

The Case Study "Autonomous Systems" addresses current questions in this area and gives students the opportunity to engage with these topics independently and creatively. Furthermore, students are given the opportunity to deal with these topics independently and creatively. Upon completion of this module, depending on a more theoretical or more practical focus, students will be able to identify limitations and opportunities algorithms and application of autonomous systems their specific field of application.

Professional competence:
- in depth knowledge of a specific subarea of autonomous systems and their related algorithms
- practical experience in construction and set up of autonomous systems
- knowledge and practical experience in autonomous systems performance evaluation (e.g. life test)

Methodological competence:
- Students are able to execute a literature search in a specific subareas of autonomous systems
- Students are able to evaluate and assess various algorithms used for autonomous systems

Personal competence:
- Case Study Autonomous Systems teaches students how to solve complex tasks in teams with distributed task areas. The students learn to analyse, synthesise and evaluate a task in relation to algorithms, construction and implementation in an application-related manner.

Social competence:
- The students are able to consider questions in the area of autonomous systems on the basis of case studies and to deepen their competences acquired in the module in group work and to use them in a prepared manner.
- The students are able to consider the problems from different perspectives and to use their competences acquired in the module appropriately and situation-based in individual and group discussions.

Applicability in this and other Programs

The module provides the necessary theoretical knowledge and the transfer capability to gain a deeper understanding of autonomous system construction, implementation and related software principles and the capability to apply and to evaluate autonomous systems in and for a specific area of application. This creates interfaces to courses of study such as mechanical engineering, mechatronics, electrical engineering.

Entrance Requirements

Bachelor degree in mechatronics or a closely related field

Learning Content

On the basis of an application example selected, students need to conduct literature research and, if applicable, independently work on the topic with small sub-tasks. Within an introductory part, the over-arching topic will be explained and sub-tasks defined.
Example: Autonomous Driving
- Features of necessary networked systems
- Aspects of functional safety for autonomous vehicles
- Sensor/actuator technology for the vehicle control system
- Autonomous driving and mobility concepts
- Development and implementation of algorithms in autonomous systems
- Construction, implementation and test of autonomous systems
The topics of the case studies can vary each semester.

Teaching Methods
- Guided work on seminar topics in working groups. Accompanying events / presentations by external speakers depending on the selected topic area
- i-learn (Online learning platform)
- Literature research

Remarks
The case studies are examined as so-called Prüfungsstudienarbeit and are therefore not a classic examination.
The theoretical knowledge acquired by the students is specifically applied in practice in the case study topics so that students analyse problems independently and apply proposed solutions. This intensifies the transfer of knowledge into practice and the targeted deepening of the acquired technical and methodological competences by recognising connections and evaluating them.

Recommended Literature
D. Ahlers, "Lane Detection for Intelligent Cars", University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Department of Informatics, Technical Aspects of Multimodal Systems, 05. December 2016
V. Chen, E. Chou, „Practical Object Detection and Segmentation"
F. Chollet, "Deep Learning mit Python und Keras", mitp, 2018
MKI-10 Subject-related elective course (FWP)

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Jürgen Wittmann</td>
</tr>
</tbody>
</table>
| Course number and name | Python
Quantum Computing
Tele-Experiments with Mobile Robots
Product Innovation Management in Emerging Markets
Computer Networking and Secure Network Management Interactive Online (CNSM)
ERP Systems and Digital Transformation
ROS |
| Lecturers | Prof. Dr. Patrick Glauner
Johannes Kigele
Prof. Dr. Horst Kunhardt
Virtuelles Angebot vhb |
| Semester | 2 |
| Duration of the module | 1 semester |
| Module frequency | each semester |
| Course type | compulsory course |
| Level | postgraduate |
| Semester periods per week (SWS) | 4 |
| ECTS | 4 |
| Workload | Time of attendance: 60 hours
self-study: 60 hours
Total: 120 hours |
| Type of Examination| Examination form of the chosen module |
| Weight | 4 out of 90 ECTS |
| Language of Instruction | German, English |
Module Objective

Students can choose from a range of FWP subjects as part of the compulsory elective subject module.

Students are offered, among other things, the opportunity to work on a technical project in which they are highly self-responsible and self-organized, yet work on a topic related to artificial intelligence for smart sensors and actuators under the guidance of the lecturer.

Furthermore, courses from a subject catalogue of related studies are offered at the DIT and, if applicable, the Virtual University of Bavaria (VHB), e.g.

- Advanced Modelling and Simulation (Master Mechatronic and Cyber-Physical Systems)
- Data Security and Data Protection (Master Medical Informatics)
- Collaborative Systems (Master Medical Informatics)

Further courses deepen scientific topics in the field of artificial intelligence for smart sensors and actuators.

The offer is reviewed every semester and updated if necessary.

After completing the FWP module, the students have achieved the learning goals defined in the sub-module.

In the FWP module, the following competences are to be taught:

Professional competence:
The competences result from the chosen FWP subject.

Methodological competence:
The competences result from the chosen FWP subject.

Personal competence:
The competences result from the chosen FWP subject.

Social competence:
The competences result from the chosen FWP subject.

Applicability in this and other Programs

All Master's programmes in which technical knowledge is required to solve complex problems.
Entrance Requirements

Bachelor’s degree in mechatronics or a closely related field

Learning Content

The contents result from the respective FWP subject.

Teaching Methods

The didactic methods result from the respective FWP subject.

Remarks

The FWP range of subjects includes courses with different ECTS values. Students are advised to take courses with at least 4 ECTS values.

The type of examination conducted for FWP courses is subject to the currently valid study regulations.

Recommended Literature

The literature results from the respective FWP subject.

Python

Objectives

The lecture Python conveys basic and advanced knowledge about the programming language Python. Python is already widely used and spread in the industry.

After completion of this module, the student will have achieved the following learning objectives:

Professional competences:
- Programming language Python
- Typical expressions in programming

Methodical Expertise:
- Understand, analyze and alter existing programming code
- Error analysis and handling

Personal competences:
- Construct advanced Python applications
- Understand other Python-based programs and their functionality

Social competences:
- Working in a team through a project

Entrance Requirements

Bachelor's degree in mechatronics or a closely related field. In addition basic knowledge in programming and Object Oriented Programming (OOP) would be preferable.

Learning Content

- Variables - If-Clauses - Loops - Functions - Classes - Inputs - Exceptions
- CLI - GUI - Documentation - Projects - Decorators - Modules - Virtual Environments - Testing - Logging - Basics of usage in Data Science

Type of Examination

written ex. 90 min.

Methods

During the lectures, relevant theoretical knowledge will be taught. Through specific examples the students will be able to apply this knowledge to programming exercises. Here, the method of problem-based learning is centralised and is meant to promote the ability for independent acquisition of knowledge and problem-solving skills among students.

Recommended Literature

Romano, Fabrizio: Learning Python; Packt Publishing (2018)
Quantum Computing

Objectives

This class provides students with an introduction to Quantum Computing (QC), which looks promising to solve certain computational problems substantially faster than classical computers. QC began in the early 1980s and in recent years, investment into QC research has increased in both the public and private sectors. Students will acquire knowledge in QC and its applications in various domains such as machine learning and cryptography. They will also be able to elaborate it further in the future, for example in projects or further studies. Overall, QC is a cutting-edge field, with many high-pay opportunities for graduates. Upon completion of this module, the student has achieved the following learning objectives:

Professional competence:
- understanding of QC and its application

Methodological competence:
- elaboration of application scenarios

Personal competence:
- The students learn how to analyze and evaluate a problem and how QC can help to solve it

Social competence:
- Students are able to reflect on the requirements in the field of QC and transfer them to relevant application scenarios.

Learning Content

The following topics will be discussed in class:
- Introduction: history, comparison to traditional computing, applications, business potentials
- Foundations: complex numbers, complex vector spaces
- Systems: deterministic systems, probabilistic systems, quantum systems, assembling systems
- Quantum theory: states, superposition, observables, measuring, dynamics, assembling quantum
- systems, entanglement
- Architecture: bits and qubits, classical gates, reversible gates, quantum gates, no-cloning theorem
- Selected algorithms: Deutsch's, Deutsch-Jozsa, Simon's, Grover's, Shor's
- Theoretical computer science: limits of quantum computing, complexity classes
- Quantum computers and programming: goals and challenges, decoherence, physical realizations,
- quantum annealing, adiabatic quantum computing
- Applications: quantum machine learning, quantum cryptography, quantum information theory

Type of Examination

presentation 15 - 45 min.

Methods

This course is taught 180 minutes a week, which include lectures, laboratory sessions, seminar sessions and guest lectures. Towards the end of the term, students give a graded presentation on a selected topic related to quantum computing.

Recommended Literature

Tele-Experiments with Mobile Robots

Objectives

The idea of this course is to use modern teleoperation and make robotics more approachable. Experiments part of this course can be performed via internet and these include experiments in robot kinematics, navigation of remote rovers, path planning and sensor data acquisition and processing. The real robot used in the experiments is a four
wheeled ackermann steered real wheel driven indoor mobile robot designed and built at our department specifically for remote experiments.

Learning Content

Tele-Experiments with mobile robots" is an attempt to put basic robot theory and its implementation together to bring to students an interesting and practical course. Given that this tele-course is simultaneously used as part of regular on-site lectures, the course contents are kept up-to-date and always accessible. The experiments available here include a carefully selected mixture of real-world and simulation of robotic principles. Various topics in field robotics including kinematics, navigation principles, path planning, theoretical analysis and inverse kinematics, sensor data acquisition and processing are discussed and students are presented with challenging quizzes before beginning the experiments. Sensors are also chosen so that students get confusing results and are supposed to spend time thinking about the acquired sensor values and how to interpret those. Time delay concepts in robot teleoperation on variable bandwidth networks are also transparently presented to users as part of involuntary learning.

Contents:

1) Kinematics of a car-like mobile robot

2) Navigation control of a car-like mobile robot

3) Path planning of a car-like mobile robot

4) Modelling of the forward and inverse kinematics of differential drive robot

5) Sensor data acquisition and processing

Type of Examination

written student research project

Methods

Virtual internship

Forms of interaction with the system/lecturer:

e-mail
Forms of interaction with fellow learners:

e-mail

Product Innovation Management in Emerging Markets

Objectives

The course "Product Innovation Management in Emerging Markets" is intended for future managers and entrepreneurs who want to understand the trends in the management of product innovation in an emerging markets context. The course includes a combination of online lectures, videos, keynotes, and case studies in which participants study the management of product innovation in emerging economies. Course contents include:

- An introduction to product innovation management in emerging markets
- Basic definitions and concepts of emerging markets as well as innovation
- Classification and case studies of innovations originating from emerging markets: e.g., frugal innovation, jugaad innovation, reverse innovation
- A discourse about the transformation of research and development and innovation strategies
- Current trends and outlook on the product innovation management in emerging markets

Learning Goals:

Students will ...

- ... become familiar with scientific literature about product innovation management in emerging markets,
- ... understand basic concepts of innovation and emerging markets,
- ... learn different types of innovations originating from emerging markets,
- ... apply their knowledge about innovation in emerging markets in case studies, and
- ... learn to apply the case study method as part of an interdisciplinary team (group presentation)

Learning Content

Content:

1 General information
2 Introduction

3 How we define emerging markets

4 How we define innovation

5 Constraint-based innovation

6 Reverse innovation

7 Transformation of strategies

8 Future outlook

9 Group assignment

Detailed content:
1 General information - Course description - Course structure - FAQ - Course forum - Case study guidelines - Glossary
2 Introduction - Learning targets - Changing business models - Localization - Internationalization - Summary - Further reading
3 How we define emerging markets - Learning targets - What are emerging markets - Characteristics - Comparison between developed and emerging markets - Growth drivers of emerging markets - Emerging countries - BRICS - Advantages of doing business in emerging markets - Classification of countries - Summary - Further reading
4 How we define innovation - Learning targets - Definitions - The innovation process - Emerging markets as innovation laboratories - Innovation approaches in emerging markets - Summary - Further reading
5 Constraint-based innovation - Learning targets - Introduction - What is Jugaad - From Jugaad to Frugal Innovation - What is Frugal Innovation - Case studies - Summary - Further reading
6 Reverse Innovation - Learning targets - Introduction - What is Reverse Innovation - Reverse Innovation is gaining momentum - Glocalization vs. Reverse Innovation - Reverse Innovation begins - Case studies - Summary - Further reading
7 Transformation of strategies - Learning targets - Strength and weaknesses of BRIC - Doing business in emerging markets - Major risks in emerging markets - Summary - Further reading
8 Future outlook - Learning targets - Emergence of global giants - Internationalization motives of emerging market firms - Types of firms and internationalization strategies - Upcoming trends - Summary - Further reading
9 Group assignment

Type of Examination

written ex. 90 min.

Methods

virtual lecture

Forms of interaction with the system/lecturer:

Exercises for self-study, chat

Forms of interaction with fellow learners:

Chat, forum, joint task processing

Computer Networking and Secure Network Management Interactive Online (CNSM)

Objectives

The course is divided into two parts:

Part I: Fundamentals of Computer Networking

Part II: Secure Computer Network Management

Part I: Fundamentals of Computer Networking

The standard ISO/OSI computer networking model is introduced first and compared with the TCP/IP model based on RFC specifications; the roles and features of each of the layers of both models are presented.

The most important protocols and services of each layer used for networking the local and remote computers are also presented in the form of a top-down approach. All protocols are analyzed hands on using remote virtual labs and analyzer tools such as Wireshark.
The roles and the main features of the network components, i.e. hub, switch, router and DNS server are addressed as well. Their operations are shown and tested using the remote virtual labs and experimental virtualized network configurations. There is also a project (programming of a simple application based on TCP and UDP sockets) which is a prerequisite for admission to the final exam.

Teaching resources offered: tutorials, lab instructions, virtualized ready set network configuration (downloadable on students' PCs), case studies, forums, exam patterns, student support materials

Part II: Secure Computer Network Management

The role and the objectives of network management (NM) for an organization are initially addressed. Various standard and private Management Information Bases (MIB) and remote MIBs are presented. The different types of network management tools, i.e. OpenNMS, NetFlow Collector, as well as the network management protocols SNMPv2/v3, NetFlow and OpenFlow network management protocols are experienced hands on based on virtualized experimental virtual networks and software tools.

Experiments are also conducted on the fundamentals of the Reconnaissance and DoS network attack types and their effects on network components and network applications to gain hand-on experience. An understanding is gained of the need for protection tools and the various types of tools. Legacy protection tools and other techniques for protecting the network components (FW, IPS, VPN) are addressed. Furthermore, secure management concepts (e.g. migration to NGFW, NGIPS, Sandbox) for the purpose of protecting against new types of attacks (e.g. ransomware, protocol anomalies) are implemented. In addition, awareness is raised of the security assurance requirements of organizations for network protection.

Teaching resources offered: tutorials, lab instructions, virtualized ready set network configuration (downloadable on students PCs), case studies, forums, exam patterns, student support material

Collaborative and cumulative project for Part II: Program and implement a secure Software Defined Network (SDN) using Snort as the intrusion attacks detector. The project is carried out in a collaborative manner by international teams of 2-3 students. The project is cumulative, i.e. each project step is based on the framework provided by the prior steps. The project is mandatory for admittance to the final exam.

Learning Content

Content:
Part I: Fundamentals of Computer Networking
- Computer Networking Terminology
- Computer Networking Architecture
- Application Layer
- Transport Layer
- Network Layer
- Multiprotocol Label Switching (MPLS)
- Data Link Layer wired networks
- Data Link Layer wireless networks
- Multimedia Technology

Part II: Secure Computer Network Management
- Surveys of Fundamentals on Computer Networks
- Network Management (NM) Architecture
- Management Information Bases (MIBs)
- NM Protocols
- Managing Network Security
- Managing Network Protection

Detailed content:

Part I: Fundamentals of Computer Networking
- Computer Networking Terminology
- Computer Networking Architecture: ISO/OSI versus TCP/IP models, role of the layers, interfaces, and protocols between layers
- Application Layer: services, application protocols (HTTP, FTP, E-Mail, DNS)
- Transport Layer: TCP protocol (sockets, analyze, error cases), UDP protocol (analyze), application programming using TCP/UDP Sockets
- Network Layer: addressing in global networks, subnetting, routing in Internet, routing algorithms, routing protocols (RIPv2 & OSPF), routing tables, ICMP protocol, protocol analyses, router operation
- Multiprotocol Label Switching (MPLS)
- Data Link Layer wired networks: CSMA/CD protocol, Ethernet versions, Ethernet analyses, VLAN principle, WAN protocols, switch operation
- Data Link Layer wireless networks: CSMA/CA protocol according to IEEE 802.11, message analyzes, access point operation
- Multimedia Technology: VoIP operation, RTP, RTCP, SIP, G.711, G.723 protocols, analyses of VoIP protocols

Part II: Secure Computer Network Management
- Surveys of Fundamentals on Computer Networks: MAC Control, TCP/IP Stack, STP protocol, VLANs, subnetting, routing algorithms, routing protocols, routing tables, QoS, CoS
- Network Management (NM) Architecture: reference model, legacy NM functionalities, proxy architecture, policy governed architecture, EVAS NM architecture (Endpoint Visualization, Access and Security), Software Defined Networks architecture (SDN), Mininet
- Management Information Bases (MIBs): standard and private MIBs (MIB II, RMON1, RMON2, ASN.1), language, Structure of Management Information (SMI), Basic Encoding Rules (BER), NM Systems (OpenNMS, NetFlow Collector)
- NM Protocols: SNMPv2, Secure SNMPv3, NetFlow, NetCONF, OpenFlow for SDNs, Case Study based on Mininet
- Management Network Security: Confidentiality-Integrity-Availability-Model, managing Network Access Control (NAC), legacy NAC using Std. IEEE 802.1X and RADIUS; Case Study: NAC using Policy Governed Network CISCO-ISE; managing Transport Layer Secure Connections (SSL, TSL); managing Network Layer Security (IPSec and VPNs); managing Network Access Decision Control using Policy Engines
- Managing Network Protection: Type of Attacks (Reconnaissance, Denial of Service (DoS), DDoS), case studies of network attacks, managing protection methods (packet filtering, ACL, PAT/NAT, FW, VLAN, Honeypots, next generation FW (NGFW), next generation IPS (NGIPS), managing Sandboxing Protection)

Lab assignments:
1. Managing Static/RIPv2/OSPF routing
2. Monitoring/controlling CNs using SNMP v2 & v3 and MIBII technology
3. Monitoring the CN Security using OpenNMS and SNMP
5. Configuring/analyzing CN protection using FW and NAT tools
6. Programming, deploying, and analyzing various CN attacks (Reconnaissance, DoS)
7. Configuring/analyzing VPN based traffic protection using OpenVPN
8. Configuring/analyzing IPS protection using Snort
9. Configuring/analyzing network attacks using Cuckoo Sandbox
10. Monitoring/controlling SDN-based CNs using Mininet

All assignments are carried out using the virtual lab container with network components and software packages already installed. The network components are based on virtual machines and open source software tools such as Wireshark, Vyos Router supporting MIBII and SNMPv2&3, NetFlow Agents, OpenNMS, NetFlow Collector, Snort, OpenVPN, Mininet, and OpenvSwitch. All assignments are mandatory for admittance to the exam.
Type of Examination

written ex. 90 min.

Methods

Virtual seminar

Forms of interaction with the system/lecturer:

e-mail, cooperation between learner and supervisor during task processing, exercises for self-study

Forms of interaction with fellow learners:

e-mail, forum

ERP Systems and Digital Transformation

Objectives

Enterprise Resource Planning Systems (ERP systems) are part of the basic equipment of medium-sized companies and global corporations. In the operational environment they are the central application systems for controlling operational processes. As the central control unit and memory of every company, ERP systems support the operational work processes and, among other things, take over the integration task across all departments, from sales and procurement to production and accounting.

The digital transformation is changing work processes and forms of organization (see VDI 2013), which means that companies need to change their competence profiles (Gerholz 2018). Studies indicate that the ability to solve problems in the environment of operational processes and the central application systems (ERP systems), the understanding of new technologies (including the use of IoT, cloud computing, and AI) and monitoring activities (e.g., analysis of the operational databases resulting from the processes; data analytics) are important (IW 2016).
This CLASSIC vhb course addresses these needs and introduces the central, operational application systems (ERP systems). After a theoretical introduction to the topic "ERP Systems" and "Business Processes", the learning environment offers participants the opportunity to deepen their knowledge of two ERP systems (Infor VISUAL ERP and Microsoft Dynamics NAV) and to consolidate the theoretical foundations through practical experience. In the subsequent case studies "IoT", "Mobile ERP", and "Data Extraction", participants are given the opportunity to delve into current key topics in the field of business digitization processes. As an integrating data hub, ERP systems are the central starting point for implementing these digital trends.

Internet of Things (IoT)

offers the technical basis in the production environment to connect machines and material digitally with the business application systems without media discontinuity. With the IoT infrastructure, planning-relevant machine data such as machine running times, downtimes, and rejects can be automatically reported directly from the shop floor up to the strategic planning systems (ERP system). The planning process is further optimized using current and accurate data points. In the case study, Microsoft Azure and a Raspberry simulator are used as basic components to penetrate the basic architecture of IoT solutions.

Mobile ERP

is the application of an ERP system on mobile devices such as tablets and mobile phones. This type of application allows data to be created and retrieved in real time regardless of the company’s location. In this way, for example, customer requirements can be better met. Ultimately, this leads to an improvement in the flow of information and to an optimization of the process flows. In the case study, the participant gains experience in the application and function of mobile ERP solutions using Microsoft Dynamics NAV as an example.

Data Extraction

is the basis of any digitalized system. The exchange and provision of data even across company boundaries and the evaluation of this data by data analysis tools such as Power BI, Qlik, or Tableau form the technical basis of Business Intelligence projects. The case study uses Power BI to develop basic concepts for connectivity and data presentation.
After successful completion of the module the learner should be able to ...
- identify structural characteristics and functionalities of ERP systems and compare individual ERP systems with each other based on these,
- recognize the integration effect of ERP systems and their architecture,
- assign digital task managers to operational tasks in a targeted manner,
- describe the potential of mobile ERP applications (Mobile ERP),
- describe and implement a basic architecture for the integration of sensor data into an ERP system in the context of the Internet of Things (IoT), and
- know and apply the possibility of data extraction and evaluation in the ERP environment as the basis of Business Intelligence (BI) software.

Learning Content

- Introduction to the field of ERP systems - LEA's DREAM: From industrialization to digitalization
- ERP basic knowledge - THEORY
- ERP application - INFOR VISUAL ERP
- ERP application - MICROSOFT DYNAMICS NAV
- Case study: IOT
- Case study: MOBILE ERP
- Case Study: DATA EXTRACTION

Type of Examination

written student research project

Methods

virtual lecture

Study work consisting of a practical elaboration in the ERP system including documentation (50 %) and case studies (50 %); further information on the exam can be found in the course environment.

ROS

Type of Examination

written ex. 90 min.
MKI-11 Systems Design

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Jürgen Wittmann</td>
</tr>
<tr>
<td>Course number and name</td>
<td>MKI111 Systems Design MKI112 Systems Intercommunication</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Josef Schmid, Prof. Jürgen Wittmann</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>each semester</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Level</td>
<td>postgraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 90 hours self-study: 90 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 120 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>120 min.</td>
</tr>
<tr>
<td>Weight</td>
<td>6 out of 90 ECTS</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

Module Objective

The module "Systems Design" provides insight into the organizational and technical approaches to develop sensor systems starting with the customer requirements and project setup through system design and requirement monitoring up to the realization of the system including proof of fulfillment of functional and reliability requirements. Customer requirements as well as production capabilities are the basis of the requirements definition process.
Based on the actual system development process of major sensor producing companies, students shall gain in-depth knowledge of the complete system design process. In addition, as part of Systems Intercommunication, students learn about cyberphysical networks, system and network communication. A major focus is given to various aspects of Internet of Things (IoT) where physical objects are connected which are embedded with sensors and software etc. and which exchange a large amount of data over the internet or other means.

After completion of this module, the student has achieved the following learning objectives:

Professional competence:
- requirements management as basis of customer-oriented and capability-driven system development
- basic requirements and methods of functional safety for sensors in specific fields of application
- system concept and circuit design including system communication
- methods of planning as well as verifying system functionality and reliability performance
- technology and fields of application of Internet of things

Methodological competence:
- Knowledge of roles and responsibilities within a technically oriented project team
- Setting, monitoring and realization of project objectives
- Ability to understand and phrase requirements and transfer those into a data sheet (exercise)
- Understanding and capability to develop and setup cyberphysical system communication and data exchange in an IoT environment
- Understand IoT fields of application, e.g. smart factory, robotics, autonomous systems

Personal competence:
- understand system design as part of a major project
- ability to penetrate a complex system and break it down to sub-topics including their interrelationships

Social competence:
- Understand systems as complex entities. Ability to work on sub-topics towards the overall system functionality.
Applicability in this and other Programs

The module provides the necessary theoretical background and transfer possibility for the design of systems and the respective system parts intercommunication. Interfaces to mechatronics, electrical engineering and computer science.

Entrance Requirements

Bachelor degree in mechatronics or a closely related field

Learning Content

The lecture "Systems Design" provides insight into the organizational and technical approaches to develop sensor systems starting with the customer requirements and project setup through system design and requirement monitoring up to the realization of the system including proof of fulfillment of functional and reliability requirements. Customer requirements as well as production capabilities are the basis of the requirements definition process.

Based on the actual system development process of major sensor producing companies, students shall gain in-depth knowledge of the complete system design process.

In addition, the following topics are also covered in this module:
- system networking / system fusion
- construction and operating principle of prompt, serial communication systems
- cyber security
- technology, market and applications of the Internet of Things (IoT)

Teaching Methods

- Seminar-like teaching with joint exercises as well as presentations to deepen the knowledge achieved through application
- i-Learn (online learning platform)

Recommended Literature

Bühne, "Handbuch Requirements Management nach IREB Standard, Aus- und Weiterbildung zum IREB Certified Professional for Requirements Engineering Advance Level "Requirements Management", Vers. 1.0.1
DIN ISO 26261
Firouzi, F., Chakrabarty, K., Nassif, S., "Intelligent Internet of Things: From Device to Fog and Cloud, 2020, Springer, Switzerland
MKI-12 Master module

<table>
<thead>
<tr>
<th>Module code</th>
<th>MKI-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Jürgen Wittmann</td>
</tr>
</tbody>
</table>
| Course number and name | Master`s thesis
 | Master seminar |
| Semester | 3 |
| Duration of the module | 1 semester |
| Module frequency | each semester |
| Course type | required course |
| Level | postgraduate |
| Semester periods per week (SWS) | 0 |
| ECTS | 24 |
| Workload | Time of attendance: 0 hours
 | self-study: 720 hours
 | Total: 720 hours |
| Type of Examination | , master thesis |
| Weight | 24 out of 90 ECTS |
| Language of Instruction | English |

Module Objective

The master’s programme "Artificial Intelligence for Smart Sensors and Actuators" is concluded with a master thesis. Students are expected to prove that they can independently and successfully complete a certain task within a given period of time and that they can apply scientifically-founded theoretical and practical knowledge to solve a problem. After successful completion of the master thesis, students are able to work independently on complex scientific/technical tasks. They solve problems using digital methods as well as tools and find answers to current questions in the field of artificial intelligence for smart sensors and actuators.
The teaching content taught during the course of studies is applied in the form of a scientific paper. The problem is to be independently analysed, structured and processed within a given time frame. This trains the ability to independently work on technical problems of a larger related topic and to process the results in scientific form. The aim is, among other things, to deepen and apply the ability to document the results transparently.

In addition to the Master's thesis (22 ECTS), the Master's seminar (2 ECTS) is also part of this module. The master's seminar consists of two parts that must be passed to successfully complete the module. To prepare for the master's thesis, participation in the seminar series "Career Start into German Technology Companies" is mandatory. The seminars / workshops are offered as block events during the first two semesters of study. The events cover a variety of topics that are of great importance for the preparation of the Master's thesis. In addition to scientific working methods, students are also introduced to application processes and the general conditions of the German labour market and its entry after graduation. The second part of the Master's seminar consists of the colloquium. After submitting the Master's thesis, it is presented in a presentation of about 15 minutes and then defended. The colloquium is assessed with 2 ECTS.

Professional competence

Students are enabled to familiarise themselves with technical tasks, to analyse problems independently and to solve them.

After completing the module, students are able to work on a problem from the broad field of artificial intelligence for smart sensor and actuator technology in a scientifically sound manner.

Methodological Competence

The ability to independently work on and solve a comprehensive problem from the engineering sciences on a scientific basis is the overriding goal of methodological competence.

Personal competence

Independent, autonomous and self-disciplinary scientific, methodical processing of a practice-relevant, delimitable (sub-)project in a study programme-related environment as well as written, independent documentation in the form of a scientific paper and require personal skills.

Social competence

The students improve their social and interface competence through intensive communication with the supervisors at the Deggendorf Institute of Technology and in the cooperating industrial company.
Applicability in this and other Programs

The Master's programme "Artificial Intelligence for Smart Sensors and Actuators" enables students to work scientifically. The Master's degree entitles the holder to a subsequent doctorate.

Entrance Requirements

Admission requirements are the successfully completed case studies including the scientific elaboration of the project topics.

The registration for the master thesis requires that at least 30 ECTS credits have been achieved (cf. study and examination regulations (SPO)).

Learning Content

The topic of the master thesis will be set by a professor of the participating universities or by a cooperating company. In addition, the students are entitled to propose their own topics. A DIT professor is responsible for supervision and content support.

The master thesis includes:

- Presentation of the state-of-the-art in science and technology of the topic being worked on
- Description of the methodology and the course of the own theoretical and experimental procedure including concept development
- Decision-making regarding the most favourable problem solution
- The integration of the own work into the work of the supervising institutes/faculties and possible industry partners.
- Report on own publications
- Report on the applications/possible applications for funding within the scope of the topic
- Creation of test setups and programs
- Execution of measurements and test runs including their evaluation
- Scientific documentation of the technical results achieved and their evaluation
- Study of literature

By writing a master thesis, students should demonstrate their ability to apply the knowledge and skills acquired during their studies to an independent scientific thesis.

The master thesis is followed by a colloquium as an oral examination. The students present their master thesis and defend it.
Teaching Methods

Guidance to independent work according to scientific methods by the respective supervisor.

seminars, workshops,
colloquium

Remarks

The subject content of the master thesis can be chosen freely and individually by students. The topic must be recognised by the supervising professor. Furthermore, it is possible to work on a topic in cooperation with a company and to work on a research topic at the faculty.

Recommended Literature

Literature selected by the student for the specific subject area.
Support for scientific work:

Eco, Umberto: How to write a scientific thesis; 13th edition; UTB Verlag; Vienna; 2010.

Scheld, Guido: Instructions for the preparation of internship, seminar and diploma theses as well as bachelor and master theses; 7th edition; Fachbibliothek Verlag; Büren; 2008.

Rossig, Wolfram; Prätsch, Joachim: Scientific works: Guidelines for term papers, bachelor's and master's theses, diploma and master's theses, dissertations; 7th edition; team printing; Weyhe; 2008.

Standop, Ewald; Meyer, Matthias: The form of scientific work; 18th edition; Quelle & Meyer; Wiebelsheim; 2008.